[Vendor] mssqldb: 2019-11-28 -> 2020-04-28 (#11364)

update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)
pull/11365/head^2
6543 2020-05-10 19:42:52 +02:00 committed by GitHub
parent da5e3fa299
commit 6e23a1b843
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 987 additions and 1378 deletions

4
go.mod
View File

@ -26,7 +26,7 @@ require (
github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect
github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect
github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc
github.com/dgrijalva/jwt-go v3.2.0+incompatible
github.com/dustin/go-humanize v1.0.0
github.com/editorconfig/editorconfig-core-go/v2 v2.1.1
@ -102,7 +102,7 @@ require (
github.com/yohcop/openid-go v1.0.0
github.com/yuin/goldmark v1.1.25
github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79
golang.org/x/net v0.0.0-20200506145744-7e3656a0809f
golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d
golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f

6
go.sum
View File

@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs
github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM=
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA=
github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA=
github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg=
github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU=
github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM=
github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ=
github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no=
@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM=
golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88=
golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA=
golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8=
golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js=

View File

@ -18,7 +18,7 @@ Other supported formats are listed below.
### Common parameters:
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used.
* `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string.
* `password`
* `database`
* `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts.
@ -106,6 +106,26 @@ Other supported formats are listed below.
* `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar"
* `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar"
### Azure Active Directory authentication - preview
The configuration of functionality might change in the future.
Azure Active Directory (AAD) access tokens are relatively short lived and need to be
valid when a new connection is made. Authentication is supported using a callback func that
provides a fresh and valid token using a connector:
``` golang
conn, err := mssql.NewAccessTokenConnector(
"Server=test.database.windows.net;Database=testdb",
tokenProvider)
if err != nil {
// handle errors in DSN
}
db := sql.OpenDB(conn)
```
Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements
actually trigger the retrieval of a token, this happens when the first statment is issued and a connection
is created.
## Executing Stored Procedures
To run a stored procedure, set the query text to the procedure name:

View File

@ -0,0 +1,51 @@
// +build go1.10
package mssql
import (
"context"
"database/sql/driver"
"errors"
"fmt"
)
var _ driver.Connector = &accessTokenConnector{}
// accessTokenConnector wraps Connector and injects a
// fresh access token when connecting to the database
type accessTokenConnector struct {
Connector
accessTokenProvider func() (string, error)
}
// NewAccessTokenConnector creates a new connector from a DSN and a token provider.
// The token provider func will be called when a new connection is requested and should return a valid access token.
// The returned connector may be used with sql.OpenDB.
func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) {
if tokenProvider == nil {
return nil, errors.New("mssql: tokenProvider cannot be nil")
}
conn, err := NewConnector(dsn)
if err != nil {
return nil, err
}
c := &accessTokenConnector{
Connector: *conn,
accessTokenProvider: tokenProvider,
}
return c, nil
}
// Connect returns a new database connection
func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) {
var err error
c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider()
if err != nil {
return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err)
}
return c.Connector.Connect(ctx)
}

View File

@ -37,6 +37,7 @@ type connectParams struct {
failOverPartner string
failOverPort uint64
packetSize uint16
fedAuthAccessToken string
}
func parseConnectParams(dsn string) (connectParams, error) {

View File

@ -397,7 +397,10 @@ func (s *Stmt) Close() error {
}
func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) {
to := uint32(timeout / time.Second)
// 2.2.5.3.1 Query Notifications Header
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0
// Timeout in milliseconds in TDS protocol.
to := uint32(timeout / time.Millisecond)
if to < 1 {
to = 1
}

View File

@ -4,11 +4,14 @@ package mssql
import (
"crypto/des"
"crypto/hmac"
"crypto/md5"
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"strings"
"time"
"unicode/utf16"
"golang.org/x/crypto/md4"
@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password
return response(hash, passwordHash)
}
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
if string(bytes[0:8]) != "NTLMSSP\x00" {
return nil, errorNTLM
}
if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE {
return nil, errorNTLM
}
flags := binary.LittleEndian.Uint32(bytes[20:24])
var challenge [8]byte
copy(challenge[:], bytes[24:32])
func ntlmHashNoPadding(val string) []byte {
hash := make([]byte, 16)
h := md4.New()
h.Write(utf16le(val))
h.Sum(hash[:0])
var lm, nt []byte
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
nonce := clientChallenge()
var lm_bytes [24]byte
copy(lm_bytes[:8], nonce[:])
lm = lm_bytes[:]
nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password)
nt = nt_bytes[:]
} else {
lm_bytes := lmResponse(challenge, auth.Password)
lm = lm_bytes[:]
nt_bytes := ntResponse(challenge, auth.Password)
nt = nt_bytes[:]
return hash
}
func hmacMD5(passwordHash, data []byte) []byte {
hmacEntity := hmac.New(md5.New, passwordHash)
hmacEntity.Write(data)
return hmacEntity.Sum(nil)
}
func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) {
// NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response
ntlmHash := ntlmHashNoPadding(password)
usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain)
ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
targetInfoLength := len(targetInfoFields)
blob := make([]byte, 32+targetInfoLength)
binary.BigEndian.PutUint32(blob[:4], 0x01010000)
binary.BigEndian.PutUint32(blob[4:8], 0x00000000)
binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano()))
copy(blob[16:24], nonce[:])
binary.BigEndian.PutUint32(blob[24:28], 0x00000000)
copy(blob[28:], targetInfoFields)
binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000)
challengeLength := len(challenge)
blobLength := len(blob)
challengeAndBlob := make([]byte, challengeLength+blobLength)
copy(challengeAndBlob[:challengeLength], challenge[:])
copy(challengeAndBlob[challengeLength:], blob)
hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob)
ntlmV2Payload = append(hashedChallenge, blob...)
// LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response
ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes)
challengeAndNonce := make([]byte, 16)
copy(challengeAndNonce[:8], challenge[:])
copy(challengeAndNonce[8:], nonce[:])
hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce)
lmV2Payload = append(hashedChallenge, nonce[:]...)
return
}
func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) {
nonce := clientChallenge()
// Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4
// Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html
if (flags & _NEGOTIATE_TARGET_INFO) != 0 {
targetInfoFields, err := getNTLMv2TargetInfoFields(message)
if err != nil {
return lm, nt, err
}
nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now())
return lm, nt, nil
}
var lm_bytes [24]byte
copy(lm_bytes[:8], nonce[:])
lm = lm_bytes[:]
nt_bytes := ntlmSessionResponse(nonce, challenge, password)
nt = nt_bytes[:]
return lm, nt, nil
}
func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) {
type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d"
type2MessageLength := len(type2Message)
if type2MessageLength < 20 {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20)
}
targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16])
targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20])
endOfOffset := int(targetNameOffset + uint32(targetNameAllocated))
if type2MessageLength < endOfOffset {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
}
targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44])
targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48])
endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated))
if type2MessageLength < endOfOffset {
return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset)
}
targetInformationBytes := make([]byte, targetInformationAllocated)
copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)])
return targetInformationBytes, nil
}
func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) {
lm_len := len(lm)
nt_len := len(nt)
domain16 := utf16le(auth.Domain)
domain16 := utf16le(domain)
domain_len := len(domain16)
user16 := utf16le(auth.UserName)
user16 := utf16le(username)
user_len := len(user16)
workstation16 := utf16le(auth.Workstation)
workstation16 := utf16le(workstation)
workstation_len := len(workstation16)
msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len)
copy(msg, []byte("NTLMSSP\x00"))
binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE)
// Lm Challenge Response Fields
binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len))
binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len))
binary.LittleEndian.PutUint32(msg[16:], 88)
// Nt Challenge Response Fields
binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len))
binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len))
binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len))
// Domain Name Fields
binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len))
binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len))
binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len))
// User Name Fields
binary.LittleEndian.PutUint16(msg[36:], uint16(user_len))
binary.LittleEndian.PutUint16(msg[38:], uint16(user_len))
binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len))
// Workstation Fields
binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len))
binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len))
binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len))
// Encrypted Random Session Key Fields
binary.LittleEndian.PutUint16(msg[52:], 0)
binary.LittleEndian.PutUint16(msg[54:], 0)
binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len))
// Negotiate Flags
binary.LittleEndian.PutUint32(msg[60:], flags)
// Version
binary.LittleEndian.PutUint32(msg[64:], 0)
binary.LittleEndian.PutUint32(msg[68:], 0)
// MIC
binary.LittleEndian.PutUint32(msg[72:], 0)
binary.LittleEndian.PutUint32(msg[76:], 0)
binary.LittleEndian.PutUint32(msg[88:], 0)
binary.LittleEndian.PutUint32(msg[84:], 0)
// Payload
copy(msg[88:], lm)
copy(msg[88+lm_len:], nt)
copy(msg[88+lm_len+nt_len:], domain16)
copy(msg[88+lm_len+nt_len+domain_len:], user16)
copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16)
return msg, nil
}
func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) {
signature := string(bytes[0:8])
if signature != "NTLMSSP\x00" {
return nil, errorNTLM
}
messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12])
if messageTypeIndicator != _CHALLENGE_MESSAGE {
return nil, errorNTLM
}
var challenge [8]byte
copy(challenge[:], bytes[24:32])
flags := binary.LittleEndian.Uint32(bytes[20:24])
if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 {
lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain)
if err != nil {
return nil, err
}
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
}
lm_bytes := lmResponse(challenge, auth.Password)
lm := lm_bytes[:]
nt_bytes := ntResponse(challenge, auth.Password)
nt := nt_bytes[:]
return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName)
}
func (auth *ntlmAuth) Free() {
}

View File

@ -100,13 +100,15 @@ const (
// prelogin fields
// http://msdn.microsoft.com/en-us/library/dd357559.aspx
const (
preloginVERSION = 0
preloginENCRYPTION = 1
preloginINSTOPT = 2
preloginTHREADID = 3
preloginMARS = 4
preloginTRACEID = 5
preloginTERMINATOR = 0xff
preloginVERSION = 0
preloginENCRYPTION = 1
preloginINSTOPT = 2
preloginTHREADID = 3
preloginMARS = 4
preloginTRACEID = 5
preloginFEDAUTHREQUIRED = 6
preloginNONCEOPT = 7
preloginTERMINATOR = 0xff
)
const (
@ -245,6 +247,12 @@ const (
fReadOnlyIntent = 32
)
// OptionFlags3
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac
const (
fExtension = 0x10
)
type login struct {
TDSVersion uint32
PacketSize uint32
@ -269,6 +277,89 @@ type login struct {
SSPI []byte
AtchDBFile string
ChangePassword string
FeatureExt featureExts
}
type featureExts struct {
features map[byte]featureExt
}
type featureExt interface {
featureID() byte
toBytes() []byte
}
func (e *featureExts) Add(f featureExt) error {
if f == nil {
return nil
}
id := f.featureID()
if _, exists := e.features[id]; exists {
f := "Login error: Feature with ID '%v' is already present in FeatureExt block."
return fmt.Errorf(f, id)
}
if e.features == nil {
e.features = make(map[byte]featureExt)
}
e.features[id] = f
return nil
}
func (e featureExts) toBytes() []byte {
if len(e.features) == 0 {
return nil
}
var d []byte
for featureID, f := range e.features {
featureData := f.toBytes()
hdr := make([]byte, 5)
hdr[0] = featureID // FedAuth feature extension BYTE
binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD
d = append(d, hdr...)
d = append(d, featureData...) // FeatureData *BYTE
}
if d != nil {
d = append(d, 0xff) // Terminator
}
return d
}
type featureExtFedAuthSTS struct {
FedAuthEcho bool
FedAuthToken string
Nonce []byte
}
func (e *featureExtFedAuthSTS) featureID() byte {
return 0x02
}
func (e *featureExtFedAuthSTS) toBytes() []byte {
if e == nil {
return nil
}
options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT
if e.FedAuthEcho {
options |= 1 // fFedAuthEcho
}
d := make([]byte, 5)
d[0] = options
// looks like string in
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508
tokenBytes := str2ucs2(e.FedAuthToken)
binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work
d = append(d, tokenBytes...)
if len(e.Nonce) == 32 {
d = append(d, e.Nonce...)
}
return d
}
type loginHeader struct {
@ -295,7 +386,7 @@ type loginHeader struct {
ServerNameOffset uint16
ServerNameLength uint16
ExtensionOffset uint16
ExtensionLenght uint16
ExtensionLength uint16
CtlIntNameOffset uint16
CtlIntNameLength uint16
LanguageOffset uint16
@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error {
database := str2ucs2(login.Database)
atchdbfile := str2ucs2(login.AtchDBFile)
changepassword := str2ucs2(login.ChangePassword)
featureExt := login.FeatureExt.toBytes()
hdr := loginHeader{
TDSVersion: login.TDSVersion,
PacketSize: login.PacketSize,
@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error {
offset += uint16(len(atchdbfile))
hdr.ChangePasswordOffset = offset
offset += uint16(len(changepassword))
hdr.Length = uint32(offset)
featureExtOffset := uint32(0)
featureExtLen := len(featureExt)
if featureExtLen > 0 {
hdr.OptionFlags3 |= fExtension
hdr.ExtensionOffset = offset
hdr.ExtensionLength = 4
offset += hdr.ExtensionLength // DWORD
featureExtOffset = uint32(offset)
}
hdr.Length = uint32(offset) + uint32(featureExtLen)
var err error
err = binary.Write(w, binary.LittleEndian, &hdr)
if err != nil {
@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error {
if err != nil {
return err
}
if featureExtOffset > 0 {
err = binary.Write(w, binary.LittleEndian, featureExtOffset)
if err != nil {
return err
}
_, err = w.Write(featureExt)
if err != nil {
return err
}
}
return w.FinishPacket()
}
@ -844,15 +958,23 @@ initiate_connection:
AppName: p.appname,
TypeFlags: p.typeFlags,
}
auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation)
if auth_ok {
auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation)
switch {
case p.fedAuthAccessToken != "": // accesstoken ignores user/password
featurext := &featureExtFedAuthSTS{
FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1,
FedAuthToken: p.fedAuthAccessToken,
Nonce: fields[preloginNONCEOPT],
}
login.FeatureExt.Add(featurext)
case authOk:
login.SSPI, err = auth.InitialBytes()
if err != nil {
return nil, err
}
login.OptionFlags2 |= fIntSecurity
defer auth.Free()
} else {
default:
login.UserName = p.user
login.Password = p.password
}

View File

@ -17,20 +17,21 @@ type token byte
// token ids
const (
tokenReturnStatus token = 121 // 0x79
tokenColMetadata token = 129 // 0x81
tokenOrder token = 169 // 0xA9
tokenError token = 170 // 0xAA
tokenInfo token = 171 // 0xAB
tokenReturnValue token = 0xAC
tokenLoginAck token = 173 // 0xad
tokenRow token = 209 // 0xd1
tokenNbcRow token = 210 // 0xd2
tokenEnvChange token = 227 // 0xE3
tokenSSPI token = 237 // 0xED
tokenDone token = 253 // 0xFD
tokenDoneProc token = 254
tokenDoneInProc token = 255
tokenReturnStatus token = 121 // 0x79
tokenColMetadata token = 129 // 0x81
tokenOrder token = 169 // 0xA9
tokenError token = 170 // 0xAA
tokenInfo token = 171 // 0xAB
tokenReturnValue token = 0xAC
tokenLoginAck token = 173 // 0xad
tokenFeatureExtAck token = 174 // 0xae
tokenRow token = 209 // 0xd1
tokenNbcRow token = 210 // 0xd2
tokenEnvChange token = 227 // 0xE3
tokenSSPI token = 237 // 0xED
tokenDone token = 253 // 0xFD
tokenDoneProc token = 254
tokenDoneInProc token = 255
)
// done flags
@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct {
return res
}
// https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a
func parseFeatureExtAck(r *tdsBuffer) {
// at most 1 featureAck per feature in featureExt
// go-mssqldb will add at most 1 feature, the spec defines 7 different features
for i := 0; i < 8; i++ {
featureID := r.byte() // FeatureID
if featureID == 0xff {
return
}
size := r.uint32() // FeatureAckDataLen
d := make([]byte, size)
r.ReadFull(d)
}
panic("parsed more than 7 featureAck's, protocol implementation error?")
}
// http://msdn.microsoft.com/en-us/library/dd357363.aspx
func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) {
count := r.uint16()
@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin
case tokenLoginAck:
loginAck := parseLoginAck(sess.buf)
ch <- loginAck
case tokenFeatureExtAck:
parseFeatureExtAck(sess.buf)
case tokenOrder:
order := parseOrder(sess.buf)
ch <- order

View File

@ -5,6 +5,8 @@
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xb.
//
// BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and
// produces digests of any size between 1 and 64 bytes.
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
//

View File

@ -42,10 +42,14 @@ type Cipher struct {
// The last len bytes of buf are leftover key stream bytes from the previous
// XORKeyStream invocation. The size of buf depends on how many blocks are
// computed at a time.
// computed at a time by xorKeyStreamBlocks.
buf [bufSize]byte
len int
// overflow is set when the counter overflowed, no more blocks can be
// generated, and the next XORKeyStream call should panic.
overflow bool
// The counter-independent results of the first round are cached after they
// are computed the first time.
precompDone bool
@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
return nil, errors.New("chacha20: wrong nonce size")
}
key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint
c.key = [8]uint32{
binary.LittleEndian.Uint32(key[0:4]),
binary.LittleEndian.Uint32(key[4:8]),
@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
// SetCounter sets the Cipher counter. The next invocation of XORKeyStream will
// behave as if (64 * counter) bytes had been encrypted so far.
//
// To prevent accidental counter reuse, SetCounter panics if counter is
// less than the current value.
// To prevent accidental counter reuse, SetCounter panics if counter is less
// than the current value.
//
// Note that the execution time of XORKeyStream is not independent of the
// counter value.
func (s *Cipher) SetCounter(counter uint32) {
// Internally, s may buffer multiple blocks, which complicates this
// implementation slightly. When checking whether the counter has rolled
// back, we must use both s.counter and s.len to determine how many blocks
// we have already output.
outputCounter := s.counter - uint32(s.len)/blockSize
if counter < outputCounter {
if s.overflow || counter < outputCounter {
panic("chacha20: SetCounter attempted to rollback counter")
}
@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) {
dst[i] = src[i] ^ b
}
s.len -= len(keyStream)
src = src[len(keyStream):]
dst = dst[len(keyStream):]
dst, src = dst[len(keyStream):], src[len(keyStream):]
}
if len(src) == 0 {
return
}
const blocksPerBuf = bufSize / blockSize
numBufs := (uint64(len(src)) + bufSize - 1) / bufSize
if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 {
// If we'd need to let the counter overflow and keep generating output,
// panic immediately. If instead we'd only reach the last block, remember
// not to generate any more output after the buffer is drained.
numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize
if s.overflow || uint64(s.counter)+numBlocks > 1<<32 {
panic("chacha20: counter overflow")
} else if uint64(s.counter)+numBlocks == 1<<32 {
s.overflow = true
}
// xorKeyStreamBlocks implementations expect input lengths that are a
// multiple of bufSize. Platform-specific ones process multiple blocks at a
// time, so have bufSizes that are a multiple of blockSize.
rem := len(src) % bufSize
full := len(src) - rem
full := len(src) - len(src)%bufSize
if full > 0 {
s.xorKeyStreamBlocks(dst[:full], src[:full])
}
dst, src = dst[full:], src[full:]
// If using a multi-block xorKeyStreamBlocks would overflow, use the generic
// one that does one block at a time.
const blocksPerBuf = bufSize / blockSize
if uint64(s.counter)+blocksPerBuf > 1<<32 {
s.buf = [bufSize]byte{}
numBlocks := (len(src) + blockSize - 1) / blockSize
buf := s.buf[bufSize-numBlocks*blockSize:]
copy(buf, src)
s.xorKeyStreamBlocksGeneric(buf, buf)
s.len = len(buf) - copy(dst, buf)
return
}
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
// keep the leftover keystream for the next XORKeyStream invocation.
if rem > 0 {
if len(src) > 0 {
s.buf = [bufSize]byte{}
copy(s.buf[:], src[full:])
copy(s.buf[:], src)
s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
s.len = bufSize - copy(dst[full:], s.buf[:])
s.len = bufSize - copy(dst, s.buf[:])
}
}
@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
s.precompDone = true
}
for i := 0; i < len(src); i += blockSize {
// A condition of len(src) > 0 would be sufficient, but this also
// acts as a bounds check elimination hint.
for len(src) >= 64 && len(dst) >= 64 {
// The remainder of the first column round.
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
// Finally, add back the initial state to generate the key stream.
x0 += c0
x1 += c1
x2 += c2
x3 += c3
x4 += c4
x5 += c5
x6 += c6
x7 += c7
x8 += c8
x9 += c9
x10 += c10
x11 += c11
x12 += s.counter
x13 += c13
x14 += c14
x15 += c15
// Add back the initial state to generate the key stream, then
// XOR the key stream with the source and write out the result.
addXor(dst[0:4], src[0:4], x0, c0)
addXor(dst[4:8], src[4:8], x1, c1)
addXor(dst[8:12], src[8:12], x2, c2)
addXor(dst[12:16], src[12:16], x3, c3)
addXor(dst[16:20], src[16:20], x4, c4)
addXor(dst[20:24], src[20:24], x5, c5)
addXor(dst[24:28], src[24:28], x6, c6)
addXor(dst[28:32], src[28:32], x7, c7)
addXor(dst[32:36], src[32:36], x8, c8)
addXor(dst[36:40], src[36:40], x9, c9)
addXor(dst[40:44], src[40:44], x10, c10)
addXor(dst[44:48], src[44:48], x11, c11)
addXor(dst[48:52], src[48:52], x12, s.counter)
addXor(dst[52:56], src[52:56], x13, c13)
addXor(dst[56:60], src[56:60], x14, c14)
addXor(dst[60:64], src[60:64], x15, c15)
s.counter += 1
if s.counter == 0 {
panic("chacha20: internal error: counter overflow")
}
in, out := src[i:], dst[i:]
in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint
// XOR the key stream with the source and write out the result.
xor(out[0:], in[0:], x0)
xor(out[4:], in[4:], x1)
xor(out[8:], in[8:], x2)
xor(out[12:], in[12:], x3)
xor(out[16:], in[16:], x4)
xor(out[20:], in[20:], x5)
xor(out[24:], in[24:], x6)
xor(out[28:], in[28:], x7)
xor(out[32:], in[32:], x8)
xor(out[36:], in[36:], x9)
xor(out[40:], in[40:], x10)
xor(out[44:], in[44:], x11)
xor(out[48:], in[48:], x12)
xor(out[52:], in[52:], x13)
xor(out[56:], in[56:], x14)
xor(out[60:], in[60:], x15)
src, dst = src[blockSize:], dst[blockSize:]
}
}

View File

@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" ||
runtime.GOARCH == "ppc64le" ||
runtime.GOARCH == "s390x"
// xor reads a little endian uint32 from src, XORs it with u and
// addXor reads a little endian uint32 from src, XORs it with (a + b) and
// places the result in little endian byte order in dst.
func xor(dst, src []byte, u uint32) {
_, _ = src[3], dst[3] // eliminate bounds checks
func addXor(dst, src []byte, a, b uint32) {
_, _ = src[3], dst[3] // bounds check elimination hint
if unaligned {
// The compiler should optimize this code into
// 32-bit unaligned little endian loads and stores.
@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) {
v |= uint32(src[1]) << 8
v |= uint32(src[2]) << 16
v |= uint32(src[3]) << 24
v ^= u
v ^= a + b
dst[0] = byte(v)
dst[1] = byte(v >> 8)
dst[2] = byte(v >> 16)
dst[3] = byte(v >> 24)
} else {
dst[0] = src[0] ^ byte(u)
dst[1] = src[1] ^ byte(u>>8)
dst[2] = src[2] ^ byte(u>>16)
dst[3] = src[3] ^ byte(u>>24)
a += b
dst[0] = src[0] ^ byte(a)
dst[1] = src[1] ^ byte(a>>8)
dst[2] = src[2] ^ byte(a>>16)
dst[3] = src[3] ^ byte(a>>24)
}
}

View File

@ -2,10 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!ppc64le gccgo purego
// +build !amd64,!ppc64le,!s390x gccgo purego
package poly1305
type mac struct{ macGeneric }
func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} }

View File

@ -26,7 +26,9 @@ const TagSize = 16
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[16]byte, m []byte, key *[32]byte) {
sum(out, m, key)
h := New(key)
h.Write(m)
h.Sum(out[:0])
}
// Verify returns true if mac is a valid authenticator for m with the given key.
@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool {
// two different messages with the same key allows an attacker
// to forge messages at will.
func New(key *[32]byte) *MAC {
return &MAC{
mac: newMAC(key),
finalized: false,
}
m := &MAC{}
initialize(key, &m.macState)
return m
}
// MAC is an io.Writer computing an authentication tag
@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC {
// MAC cannot be used like common hash.Hash implementations,
// because using a poly1305 key twice breaks its security.
// Therefore writing data to a running MAC after calling
// Sum causes it to panic.
// Sum or Verify causes it to panic.
type MAC struct {
mac // platform-dependent implementation
@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize }
// Write adds more data to the running message authentication code.
// It never returns an error.
//
// It must not be called after the first call of Sum.
// It must not be called after the first call of Sum or Verify.
func (h *MAC) Write(p []byte) (n int, err error) {
if h.finalized {
panic("poly1305: write to MAC after Sum")
panic("poly1305: write to MAC after Sum or Verify")
}
return h.mac.Write(p)
}
@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte {
h.finalized = true
return append(b, mac[:]...)
}
// Verify returns whether the authenticator of all data written to
// the message authentication code matches the expected value.
func (h *MAC) Verify(expected []byte) bool {
var mac [TagSize]byte
h.mac.Sum(&mac)
h.finalized = true
return subtle.ConstantTimeCompare(expected, mac[:]) == 1
}

View File

@ -9,17 +9,6 @@ package poly1305
//go:noescape
func update(state *macState, msg []byte)
func sum(out *[16]byte, m []byte, key *[32]byte) {
h := newMAC(key)
h.Write(m)
h.Sum(out)
}
func newMAC(key *[32]byte) (h mac) {
initialize(key, &h.r, &h.s)
return
}
// mac is a wrapper for macGeneric that redirects calls that would have gone to
// updateGeneric to update.
//

View File

@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
h.Sum(out)
}
func newMACGeneric(key *[32]byte) (h macGeneric) {
initialize(key, &h.r, &h.s)
return
func newMACGeneric(key *[32]byte) macGeneric {
m := macGeneric{}
initialize(key, &m.macState)
return m
}
// macState holds numbers in saturated 64-bit little-endian limbs. That is,
// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
type macState struct {
// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
// can grow larger during and after rounds.
// can grow larger during and after rounds. It must, however, remain below
// 2 * (2¹³⁰ - 5).
h [3]uint64
// r and s are the private key components.
r [2]uint64
@ -97,11 +99,12 @@ const (
rMask1 = 0x0FFFFFFC0FFFFFFC
)
func initialize(key *[32]byte, r, s *[2]uint64) {
r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
s[0] = binary.LittleEndian.Uint64(key[16:24])
s[1] = binary.LittleEndian.Uint64(key[24:32])
// initialize loads the 256-bit key into the two 128-bit secret values r and s.
func initialize(key *[32]byte, m *macState) {
m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
m.s[0] = binary.LittleEndian.Uint64(key[16:24])
m.s[1] = binary.LittleEndian.Uint64(key[24:32])
}
// uint128 holds a 128-bit number as two 64-bit limbs, for use with the

View File

@ -1,13 +0,0 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego
package poly1305
func sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
h := newMAC(key)
h.Write(msg)
h.Sum(out)
}

View File

@ -9,17 +9,6 @@ package poly1305
//go:noescape
func update(state *macState, msg []byte)
func sum(out *[16]byte, m []byte, key *[32]byte) {
h := newMAC(key)
h.Write(m)
h.Sum(out)
}
func newMAC(key *[32]byte) (h mac) {
initialize(key, &h.r, &h.s)
return
}
// mac is a wrapper for macGeneric that redirects calls that would have gone to
// updateGeneric to update.
//

View File

@ -2,7 +2,7 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11,!gccgo,!purego
// +build !gccgo,!purego
package poly1305
@ -10,30 +10,66 @@ import (
"golang.org/x/sys/cpu"
)
// poly1305vx is an assembly implementation of Poly1305 that uses vector
// updateVX is an assembly implementation of Poly1305 that uses vector
// instructions. It must only be called if the vector facility (vx) is
// available.
//go:noescape
func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
func updateVX(state *macState, msg []byte)
// poly1305vmsl is an assembly implementation of Poly1305 that uses vector
// instructions, including VMSL. It must only be called if the vector facility (vx) is
// available and if VMSL is supported.
//go:noescape
func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte)
// mac is a replacement for macGeneric that uses a larger buffer and redirects
// calls that would have gone to updateGeneric to updateVX if the vector
// facility is installed.
//
// A larger buffer is required for good performance because the vector
// implementation has a higher fixed cost per call than the generic
// implementation.
type mac struct {
macState
func sum(out *[16]byte, m []byte, key *[32]byte) {
if cpu.S390X.HasVX {
var mPtr *byte
if len(m) > 0 {
mPtr = &m[0]
}
if cpu.S390X.HasVXE && len(m) > 256 {
poly1305vmsl(out, mPtr, uint64(len(m)), key)
} else {
poly1305vx(out, mPtr, uint64(len(m)), key)
}
} else {
sumGeneric(out, m, key)
}
buffer [16 * TagSize]byte // size must be a multiple of block size (16)
offset int
}
func (h *mac) Write(p []byte) (int, error) {
nn := len(p)
if h.offset > 0 {
n := copy(h.buffer[h.offset:], p)
if h.offset+n < len(h.buffer) {
h.offset += n
return nn, nil
}
p = p[n:]
h.offset = 0
if cpu.S390X.HasVX {
updateVX(&h.macState, h.buffer[:])
} else {
updateGeneric(&h.macState, h.buffer[:])
}
}
tail := len(p) % len(h.buffer) // number of bytes to copy into buffer
body := len(p) - tail // number of bytes to process now
if body > 0 {
if cpu.S390X.HasVX {
updateVX(&h.macState, p[:body])
} else {
updateGeneric(&h.macState, p[:body])
}
}
h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0
return nn, nil
}
func (h *mac) Sum(out *[TagSize]byte) {
state := h.macState
remainder := h.buffer[:h.offset]
// Use the generic implementation if we have 2 or fewer blocks left
// to sum. The vector implementation has a higher startup time.
if cpu.S390X.HasVX && len(remainder) > 2*TagSize {
updateVX(&state, remainder)
} else if len(remainder) > 0 {
updateGeneric(&state, remainder)
}
finalize(out, &state.h, &state.s)
}

View File

@ -2,115 +2,187 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11,!gccgo,!purego
// +build !gccgo,!purego
#include "textflag.h"
// Implementation of Poly1305 using the vector facility (vx).
// This implementation of Poly1305 uses the vector facility (vx)
// to process up to 2 blocks (32 bytes) per iteration using an
// algorithm based on the one described in:
//
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
//
// This algorithm uses 5 26-bit limbs to represent a 130-bit
// value. These limbs are, for the most part, zero extended and
// placed into 64-bit vector register elements. Each vector
// register is 128-bits wide and so holds 2 of these elements.
// Using 26-bit limbs allows us plenty of headroom to accomodate
// accumulations before and after multiplication without
// overflowing either 32-bits (before multiplication) or 64-bits
// (after multiplication).
//
// In order to parallelise the operations required to calculate
// the sum we use two separate accumulators and then sum those
// in an extra final step. For compatibility with the generic
// implementation we perform this summation at the end of every
// updateVX call.
//
// To use two accumulators we must multiply the message blocks
// by r² rather than r. Only the final message block should be
// multiplied by r.
//
// Example:
//
// We want to calculate the sum (h) for a 64 byte message (m):
//
// h = m[0:16]r + m[16:32]r³ + m[32:48]r² + m[48:64]r
//
// To do this we split the calculation into the even indices
// and odd indices of the message. These form our SIMD 'lanes':
//
// h = m[ 0:16]r + m[32:48]r² + <- lane 0
// m[16:32]r³ + m[48:64]r <- lane 1
//
// To calculate this iteratively we refactor so that both lanes
// are written in terms of r² and r:
//
// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
// (m[16:32]r² + m[48:64])r <- lane 1
// ^ ^
// | coefficients for second iteration
// coefficients for first iteration
//
// So in this case we would have two iterations. In the first
// both lanes are multiplied by r². In the second only the
// first lane is multiplied by r² and the second lane is
// instead multiplied by r. This gives use the odd and even
// powers of r that we need from the original equation.
//
// Notation:
//