// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build !gccgo,!purego #include "textflag.h" // This implementation of Poly1305 uses the vector facility (vx) // to process up to 2 blocks (32 bytes) per iteration using an // algorithm based on the one described in: // // NEON crypto, Daniel J. Bernstein & Peter Schwabe // https://cryptojedi.org/papers/neoncrypto-20120320.pdf // // This algorithm uses 5 26-bit limbs to represent a 130-bit // value. These limbs are, for the most part, zero extended and // placed into 64-bit vector register elements. Each vector // register is 128-bits wide and so holds 2 of these elements. // Using 26-bit limbs allows us plenty of headroom to accomodate // accumulations before and after multiplication without // overflowing either 32-bits (before multiplication) or 64-bits // (after multiplication). // // In order to parallelise the operations required to calculate // the sum we use two separate accumulators and then sum those // in an extra final step. For compatibility with the generic // implementation we perform this summation at the end of every // updateVX call. // // To use two accumulators we must multiply the message blocks // by r² rather than r. Only the final message block should be // multiplied by r. // // Example: // // We want to calculate the sum (h) for a 64 byte message (m): // // h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r // // To do this we split the calculation into the even indices // and odd indices of the message. These form our SIMD 'lanes': // // h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 // m[16:32]r³ + m[48:64]r <- lane 1 // // To calculate this iteratively we refactor so that both lanes // are written in terms of r² and r: // // h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 // (m[16:32]r² + m[48:64])r <- lane 1 // ^ ^ // | coefficients for second iteration // coefficients for first iteration // // So in this case we would have two iterations. In the first // both lanes are multiplied by r². In the second only the // first lane is multiplied by r² and the second lane is // instead multiplied by r. This gives use the odd and even // powers of r that we need from the original equation. // // Notation: // // h - accumulator // r - key // m - message // // [a, b] - SIMD register holding two 64-bit values // [a, b, c, d] - SIMD register holding four 32-bit values // xᵢ[n] - limb n of variable x with bit width i // // Limbs are expressed in little endian order, so for 26-bit // limbs x₂₆[4] will be the most significant limb and x₂₆[0] // will be the least significant limb. // masking constants #define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits #define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits // expansion constants (see EXPAND macro) #define EX0 V2 #define EX1 V3 #define EX2 V4 // key (r², r or 1 depending on context) #define R_0 V5 #define R_1 V6 #define R_2 V7 #define R_3 V8 #define R_4 V9 // precalculated coefficients (5r², 5r or 0 depending on context) #define R5_1 V10 #define R5_2 V11 #define R5_3 V12 #define R5_4 V13 // message block (m) #define M_0 V14 #define M_1 V15 #define M_2 V16 #define M_3 V17 #define M_4 V18 // accumulator (h) #define H_0 V19 #define H_1 V20 #define H_2 V21 #define H_3 V22 #define H_4 V23 // temporary registers (for short-lived values) #define T_0 V24 #define T_1 V25 #define T_2 V26 #define T_3 V27 #define T_4 V28 GLOBL ·constants<>(SB), RODATA, $0x30 // EX0 DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 // EX1 DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 // EX2 DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d // MULTIPLY multiplies each lane of f and g, partially reduced // modulo 2¹³⁰ - 5. The result, h, consists of partial products // in each lane that need to be reduced further to produce the // final result. // // h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ // // Note that the multiplication by 5 of the high bits is // achieved by precalculating the multiplication of four of the // g coefficients by 5. These are g51-g54. #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ VMLOF f0, g0, h0 \ VMLOF f0, g3, h3 \ VMLOF f0, g1, h1 \ VMLOF f0, g4, h4 \ VMLOF f0, g2, h2 \ VMLOF f1, g54, T_0 \ VMLOF f1, g2, T_3 \ VMLOF f1, g0, T_1 \ VMLOF f1, g3, T_4 \ VMLOF f1, g1, T_2 \ VMALOF f2, g53, h0, h0 \ VMALOF f2, g1, h3, h3 \ VMALOF f2, g54, h1, h1 \ VMALOF f2, g2, h4, h4 \ VMALOF f2, g0, h2, h2 \ VMALOF f3, g52, T_0, T_0 \ VMALOF f3, g0, T_3, T_3 \ VMALOF f3, g53, T_1, T_1 \ VMALOF f3, g1, T_4, T_4 \ VMALOF f3, g54, T_2, T_2 \ VMALOF f4, g51, h0, h0 \ VMALOF f4, g54, h3, h3 \ VMALOF f4, g52, h1, h1 \ VMALOF f4, g0, h4, h4 \ VMALOF f4, g53, h2, h2 \ VAG T_0, h0, h0 \ VAG T_3, h3, h3 \ VAG T_1, h1, h1 \ VAG T_4, h4, h4 \ VAG T_2, h2, h2 // REDUCE performs the following carry operations in four // stages, as specified in Bernstein & Schwabe: // // 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] // 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] // 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] // 4: h₂₆[3]->h₂₆[4] // // The result is that all of the limbs are limited to 26-bits // except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. // // Note that although each limb is aligned at 26-bit intervals // they may contain values that exceed 2²⁶ - 1, hence the need // to carry the excess bits in each limb. #define REDUCE(h0, h1, h2, h3, h4) \ VESRLG $26, h0, T_0 \ VESRLG $26, h3, T_1 \ VN MOD26, h0, h0 \ VN MOD26, h3, h3 \ VAG T_0, h1, h1 \ VAG T_1, h4, h4 \ VESRLG $26, h1, T_2 \ VESRLG $26, h4, T_3 \ VN MOD26, h1, h1 \ VN MOD26, h4, h4 \ VESLG $2, T_3, T_4 \ VAG T_3, T_4, T_4 \ VAG T_2, h2, h2 \ VAG T_4, h0, h0 \ VESRLG $26, h2, T_0 \ VESRLG $26, h0, T_1 \ VN MOD26, h2, h2 \ VN MOD26, h0, h0 \ VAG T_0, h3, h3 \ VAG T_1, h1, h1 \ VESRLG $26, h3, T_2 \ VN MOD26, h3, h3 \ VAG T_2, h4, h4 // EXPAND splits the 128-bit little-endian values in0 and in1 // into 26-bit big-endian limbs and places the results into // the first and second lane of d₂₆[0:4] respectively. // // The EX0, EX1 and EX2 constants are arrays of byte indices // for permutation. The permutation both reverses the bytes // in the input and ensures the bytes are copied into the // destination limb ready to be shifted into their final // position. #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ VPERM in0, in1, EX0, d0 \ VPERM in0, in1, EX1, d2 \ VPERM in0, in1, EX2, d4 \ VESRLG $26, d0, d1 \ VESRLG $30, d2, d3 \ VESRLG $4, d2, d2 \ VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] // func updateVX(state *macState, msg []byte) TEXT ·updateVX(SB), NOSPLIT, $0 MOVD state+0(FP), R1 LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len // load EX0, EX1 and EX2 MOVD $·constants<>(SB), R5 VLM (R5), EX0, EX2 // generate masks VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] // load h (accumulator) and r (key) from state VZERO T_1 // [0, 0] VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] // unpack h and r into 26-bit limbs // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] VZERO H_1 // [0, 0] VZERO H_3 // [0, 0] VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete // replicate r across all 4 vector elements VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] // zero out lane 1 of h VLEIG $1, $0, H_0 // [h₂₆[0], 0] VLEIG $1, $0, H_1 // [h₂₆[1], 0] VLEIG $1, $0, H_2 // [h₂₆[2], 0] VLEIG $1, $0, H_3 // [h₂₆[3], 0] VLEIG $1, $0, H_4 // [h₂₆[4], 0] // calculate 5r (ignore least significant limb) VREPIF $5, T_0 VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] // skip r² calculation if we are only calculating one block CMPBLE R3, $16, skip // calculate r² MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) REDUCE(M_0, M_1, M_2, M_3, M_4) VGBM $0x0f0f, T_0 VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] // calculate 5r² (ignore least significant limb) VREPIF $5, T_0 VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] loop: CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients // load next 2 blocks from message VLM (R2), T_0, T_1 // update message slice SUB $32, R3 MOVD $32(R2), R2 // unpack message blocks into 26-bit big-endian limbs EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) // add 2¹²⁸ to each message block value VLEIB $4, $1, M_4 VLEIB $12, $1, M_4 multiply: // accumulate the incoming message VAG H_0, M_0, M_0 VAG H_3, M_3, M_3 VAG H_1, M_1, M_1 VAG H_4, M_4, M_4 VAG H_2, M_2, M_2 // multiply the accumulator by the key coefficient MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) // carry and partially reduce the partial products REDUCE(H_0, H_1, H_2, H_3, H_4) CMPBNE R3, $0, loop finish: // sum lane 0 and lane 1 and put the result in lane 1 VZERO T_0 VSUMQG H_0, T_0, H_0 VSUMQG H_3, T_0, H_3 VSUMQG H_1, T_0, H_1 VSUMQG H_4, T_0, H_4 VSUMQG H_2, T_0, H_2 // reduce again after summation // TODO(mundaym): there might be a more efficient way to do this // now that we only have 1 active lane. For example, we could // simultaneously pack the values as we reduce them. REDUCE(H_0, H_1, H_2, H_3, H_4) // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 // TODO(mundaym): in testing this final carry was unnecessary. // Needs a proof before it can be removed though. VESRLG $26, H_1, T_1 VN MOD26, H_1, H_1 VAQ T_1, H_2, H_2 VESRLG $26, H_2, T_2 VN MOD26, H_2, H_2 VAQ T_2, H_3, H_3 VESRLG $26, H_3, T_3 VN MOD26, H_3, H_3 VAQ T_3, H_4, H_4 // h is now < 2(2¹³⁰ - 5) // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. VESLG $26, H_1, H_1 VESLG $26, H_3, H_3 VO H_0, H_1, H_0 VO H_2, H_3, H_2 VESLG $4, H_2, H_2 VLEIB $7, $48, H_1 VSLB H_1, H_2, H_2 VO H_0, H_2, H_0 VLEIB $7, $104, H_1 VSLB H_1, H_4, H_3 VO H_3, H_0, H_0 VLEIB $7, $24, H_1 VSRLB H_1, H_4, H_1 // update state VSTEG $1, H_0, 0(R1) VSTEG $0, H_0, 8(R1) VSTEG $1, H_1, 16(R1) RET b2: // 2 or fewer blocks remaining CMPBLE R3, $16, b1 // Load the 2 remaining blocks (17-32 bytes remaining). MOVD $-17(R3), R0 // index of final byte to load modulo 16 VL (R2), T_0 // load full 16 byte block VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes // The Poly1305 algorithm requires that a 1 bit be appended to // each message block. If the final block is less than 16 bytes // long then it is easiest to insert the 1 before the message // block is split into 26-bit limbs. If, on the other hand, the // final message block is 16 bytes long then we append the 1 bit // after expansion as normal. MOVBZ $1, R0 MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 // Split both blocks into 26-bit limbs in the appropriate lanes. EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) // Append a 1 byte to the end of the second to last block. VLEIB $4, $1, M_4 // Append a 1 byte to the end of the last block only if it is a // full 16 byte block. CMPBNE R3, $16, 2(PC) VLEIB $12, $1, M_4 // Finally, set up the coefficients for the final multiplication. // We have previously saved r and 5r in the 32-bit even indexes // of the R_[0-4] and R5_[1-4] coefficient registers. // // We want lane 0 to be multiplied by r² so that can be kept the // same. We want lane 1 to be multiplied by r so we need to move // the saved r value into the 32-bit odd index in lane 1 by // rotating the 64-bit lane by 32. VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] MOVD $0, R3 BR multiply skip: CMPBEQ R3, $0, finish b1: // 1 block remaining // Load the final block (1-16 bytes). This will be placed into // lane 0. MOVD $-1(R3), R0 VLL R0, (R2), T_0 // pad to 16 bytes with zeros // The Poly1305 algorithm requires that a 1 bit be appended to // each message block. If the final block is less than 16 bytes // long then it is easiest to insert the 1 before the message // block is split into 26-bit limbs. If, on the other hand, the // final message block is 16 bytes long then we append the 1 bit // after expansion as normal. MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, T_0 // Set the message block in lane 1 to the value 0 so that it // can be accumulated without affecting the final result. VZERO T_1 // Split the final message block into 26-bit limbs in lane 0. // Lane 1 will be contain 0. EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) // Append a 1 byte to the end of the last block only if it is a // full 16 byte block. CMPBNE R3, $16, 2(PC) VLEIB $4, $1, M_4 // We have previously saved r and 5r in the 32-bit even indexes // of the R_[0-4] and R5_[1-4] coefficient registers. // // We want lane 0 to be multiplied by r so we need to move the // saved r value into the 32-bit odd index in lane 0. We want // lane 1 to be set to the value 1. This makes multiplication // a no-op. We do this by setting lane 1 in every register to 0 // and then just setting the 32-bit index 3 in R_0 to 1. VZERO T_0 MOVD $0, R0 MOVD $0x10111213, R12 VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] // Set the value of lane 1 to be 1. VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] MOVD $0, R3 BR multiply