package flate import "fmt" // fastGen maintains the table for matches, // and the previous byte block for level 2. // This is the generic implementation. type fastEncL2 struct { fastGen table [bTableSize]tableEntry } // EncodeL2 uses a similar algorithm to level 1, but is capable // of matching across blocks giving better compression at a small slowdown. func (e *fastEncL2) Encode(dst *tokens, src []byte) { const ( inputMargin = 12 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin ) if debugDeflate && e.cur < 0 { panic(fmt.Sprint("e.cur < 0: ", e.cur)) } // Protect against e.cur wraparound. for e.cur >= bufferReset { if len(e.hist) == 0 { for i := range e.table[:] { e.table[i] = tableEntry{} } e.cur = maxMatchOffset break } // Shift down everything in the table that isn't already too far away. minOff := e.cur + int32(len(e.hist)) - maxMatchOffset for i := range e.table[:] { v := e.table[i].offset if v <= minOff { v = 0 } else { v = v - e.cur + maxMatchOffset } e.table[i].offset = v } e.cur = maxMatchOffset } s := e.addBlock(src) // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) return } // Override src src = e.hist nextEmit := s // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := int32(len(src) - inputMargin) // nextEmit is where in src the next emitLiteral should start from. cv := load3232(src, s) for { // When should we start skipping if we haven't found matches in a long while. const skipLog = 5 const doEvery = 2 nextS := s var candidate tableEntry for { nextHash := hash4u(cv, bTableBits) s = nextS nextS = s + doEvery + (s-nextEmit)>>skipLog if nextS > sLimit { goto emitRemainder } candidate = e.table[nextHash] now := load6432(src, nextS) e.table[nextHash] = tableEntry{offset: s + e.cur} nextHash = hash4u(uint32(now), bTableBits) offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) { e.table[nextHash] = tableEntry{offset: nextS + e.cur} break } // Do one right away... cv = uint32(now) s = nextS nextS++ candidate = e.table[nextHash] now >>= 8 e.table[nextHash] = tableEntry{offset: s + e.cur} offset = s - (candidate.offset - e.cur) if offset < maxMatchOffset && cv == load3232(src, candidate.offset-e.cur) { break } cv = uint32(now) } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. // Extend the 4-byte match as long as possible. t := candidate.offset - e.cur l := e.matchlenLong(s+4, t+4, src) + 4 // Extend backwards for t > 0 && s > nextEmit && src[t-1] == src[s-1] { s-- t-- l++ } if nextEmit < s { emitLiteral(dst, src[nextEmit:s]) } dst.AddMatchLong(l, uint32(s-t-baseMatchOffset)) s += l nextEmit = s if nextS >= s { s = nextS + 1 } if s >= sLimit { // Index first pair after match end. if int(s+l+4) < len(src) { cv := load3232(src, s) e.table[hash4u(cv, bTableBits)] = tableEntry{offset: s + e.cur} } goto emitRemainder } // Store every second hash in-between, but offset by 1. for i := s - l + 2; i < s-5; i += 7 { x := load6432(src, int32(i)) nextHash := hash4u(uint32(x), bTableBits) e.table[nextHash] = tableEntry{offset: e.cur + i} // Skip one x >>= 16 nextHash = hash4u(uint32(x), bTableBits) e.table[nextHash] = tableEntry{offset: e.cur + i + 2} // Skip one x >>= 16 nextHash = hash4u(uint32(x), bTableBits) e.table[nextHash] = tableEntry{offset: e.cur + i + 4} } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-2 to s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load6432(src, s-2) o := e.cur + s - 2 prevHash := hash4u(uint32(x), bTableBits) prevHash2 := hash4u(uint32(x>>8), bTableBits) e.table[prevHash] = tableEntry{offset: o} e.table[prevHash2] = tableEntry{offset: o + 1} currHash := hash4u(uint32(x>>16), bTableBits) candidate = e.table[currHash] e.table[currHash] = tableEntry{offset: o + 2} offset := s - (candidate.offset - e.cur) if offset > maxMatchOffset || uint32(x>>16) != load3232(src, candidate.offset-e.cur) { cv = uint32(x >> 24) s++ break } } } emitRemainder: if int(nextEmit) < len(src) { // If nothing was added, don't encode literals. if dst.n == 0 { return } emitLiteral(dst, src[nextEmit:]) } }