// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build go1.11,!gccgo,!purego #include "textflag.h" // Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. // constants #define EX0 V1 #define EX1 V2 #define EX2 V3 // temporaries #define T_0 V4 #define T_1 V5 #define T_2 V6 #define T_3 V7 #define T_4 V8 #define T_5 V9 #define T_6 V10 #define T_7 V11 #define T_8 V12 #define T_9 V13 #define T_10 V14 // r**2 & r**4 #define R_0 V15 #define R_1 V16 #define R_2 V17 #define R5_1 V18 #define R5_2 V19 // key (r) #define RSAVE_0 R7 #define RSAVE_1 R8 #define RSAVE_2 R9 #define R5SAVE_1 R10 #define R5SAVE_2 R11 // message block #define M0 V20 #define M1 V21 #define M2 V22 #define M3 V23 #define M4 V24 #define M5 V25 // accumulator #define H0_0 V26 #define H1_0 V27 #define H2_0 V28 #define H0_1 V29 #define H1_1 V30 #define H2_1 V31 GLOBL ·keyMask<>(SB), RODATA, $16 DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f GLOBL ·bswapMask<>(SB), RODATA, $16 DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 GLOBL ·constants<>(SB), RODATA, $48 // EX0 DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f DATA ·constants<>+8(SB)/8, $0x0000050403020100 // EX1 DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f DATA ·constants<>+24(SB)/8, $0x00000a0908070605 // EX2 DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b GLOBL ·c<>(SB), RODATA, $48 // EX0 DATA ·c<>+0(SB)/8, $0x0000050403020100 DATA ·c<>+8(SB)/8, $0x0000151413121110 // EX1 DATA ·c<>+16(SB)/8, $0x00000a0908070605 DATA ·c<>+24(SB)/8, $0x00001a1918171615 // EX2 DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b GLOBL ·reduce<>(SB), RODATA, $32 // 44 bit DATA ·reduce<>+0(SB)/8, $0x0 DATA ·reduce<>+8(SB)/8, $0xfffffffffff // 42 bit DATA ·reduce<>+16(SB)/8, $0x0 DATA ·reduce<>+24(SB)/8, $0x3ffffffffff // h = (f*g) % (2**130-5) [partial reduction] // uses T_0...T_9 temporary registers // input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 // output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 #define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ \ // Eliminate the dependency for the last 2 VMSLs VMSLG m02_0, r_2, m4_2, m4_2 \ VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined VMSLG m02_0, r_0, m4_0, m4_0 \ VMSLG m02_1, r5_2, V0, T_0 \ VMSLG m02_0, r_1, m4_1, m4_1 \ VMSLG m02_1, r_0, V0, T_1 \ VMSLG m02_1, r_1, V0, T_2 \ VMSLG m02_2, r5_1, V0, T_3 \ VMSLG m02_2, r5_2, V0, T_4 \ VMSLG m13_0, r_0, m5_0, m5_0 \ VMSLG m13_1, r5_2, V0, T_5 \ VMSLG m13_0, r_1, m5_1, m5_1 \ VMSLG m13_1, r_0, V0, T_6 \ VMSLG m13_1, r_1, V0, T_7 \ VMSLG m13_2, r5_1, V0, T_8 \ VMSLG m13_2, r5_2, V0, T_9 \ VMSLG m02_2, r_0, m4_2, m4_2 \ VMSLG m13_2, r_0, m5_2, m5_2 \ VAQ m4_0, T_0, m02_0 \ VAQ m4_1, T_1, m02_1 \ VAQ m5_0, T_5, m13_0 \ VAQ m5_1, T_6, m13_1 \ VAQ m02_0, T_3, m02_0 \ VAQ m02_1, T_4, m02_1 \ VAQ m13_0, T_8, m13_0 \ VAQ m13_1, T_9, m13_1 \ VAQ m4_2, T_2, m02_2 \ VAQ m5_2, T_7, m13_2 \ // SQUARE uses three limbs of r and r_2*5 to output square of r // uses T_1, T_5 and T_7 temporary registers // input: r_0, r_1, r_2, r5_2 // temp: TEMP0, TEMP1, TEMP2 // output: p0, p1, p2 #define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ VMSLG r_0, r_0, p0, p0 \ VMSLG r_1, r5_2, V0, TEMP0 \ VMSLG r_2, r5_2, p1, p1 \ VMSLG r_0, r_1, V0, TEMP1 \ VMSLG r_1, r_1, p2, p2 \ VMSLG r_0, r_2, V0, TEMP2 \ VAQ TEMP0, p0, p0 \ VAQ TEMP1, p1, p1 \ VAQ TEMP2, p2, p2 \ VAQ TEMP0, p0, p0 \ VAQ TEMP1, p1, p1 \ VAQ TEMP2, p2, p2 \ // carry h0->h1->h2->h0 || h3->h4->h5->h3 // uses T_2, T_4, T_5, T_7, T_8, T_9 // t6, t7, t8, t9, t10, t11 // input: h0, h1, h2, h3, h4, h5 // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 // output: h0, h1, h2, h3, h4, h5 #define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ VLM (R12), t6, t7 \ // 44 and 42 bit clear mask VLEIB $7, $0x28, t10 \ // 5 byte shift mask VREPIB $4, t8 \ // 4 bit shift mask VREPIB $2, t11 \ // 2 bit shift mask VSRLB t10, h0, t0 \ // h0 byte shift VSRLB t10, h1, t1 \ // h1 byte shift VSRLB t10, h2, t2 \ // h2 byte shift VSRLB t10, h3, t3 \ // h3 byte shift VSRLB t10, h4, t4 \ // h4 byte shift VSRLB t10, h5, t5 \ // h5 byte shift VSRL t8, t0, t0 \ // h0 bit shift VSRL t8, t1, t1 \ // h2 bit shift VSRL t11, t2, t2 \ // h2 bit shift VSRL t8, t3, t3 \ // h3 bit shift VSRL t8, t4, t4 \ // h4 bit shift VESLG $2, t2, t9 \ // h2 carry x5 VSRL t11, t5, t5 \ // h5 bit shift VN t6, h0, h0 \ // h0 clear carry VAQ t2, t9, t2 \ // h2 carry x5 VESLG $2, t5, t9 \ // h5 carry x5 VN t6, h1, h1 \ // h1 clear carry VN t7, h2, h2 \ // h2 clear carry VAQ t5, t9, t5 \ // h5 carry x5 VN t6, h3, h3 \ // h3 clear carry VN t6, h4, h4 \ // h4 clear carry VN t7, h5, h5 \ // h5 clear carry VAQ t0, h1, h1 \ // h0->h1 VAQ t3, h4, h4 \ // h3->h4 VAQ t1, h2, h2 \ // h1->h2 VAQ t4, h5, h5 \ // h4->h5 VAQ t2, h0, h0 \ // h2->h0 VAQ t5, h3, h3 \ // h5->h3 VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves VREPG $1, t7, t7 \ VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] VSLDB $8, h1, h1, h1 \ VSLDB $8, h2, h2, h2 \ VO h0, h3, h3 \ VO h1, h4, h4 \ VO h2, h5, h5 \ VESRLG $44, h3, t0 \ // 44 bit shift right VESRLG $44, h4, t1 \ VESRLG $42, h5, t2 \ VN t6, h3, h3 \ // clear carry bits VN t6, h4, h4 \ VN t7, h5, h5 \ VESLG $2, t2, t9 \ // multiply carry by 5 VAQ t9, t2, t2 \ VAQ t0, h4, h4 \ VAQ t1, h5, h5 \ VAQ t2, h3, h3 \ // carry h0->h1->h2->h0 // input: h0, h1, h2 // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 // output: h0, h1, h2 #define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ VLEIB $7, $0x28, t3 \ // 5 byte shift mask VREPIB $4, t4 \ // 4 bit shift mask VREPIB $2, t7 \ // 2 bit shift mask VGBM $0x003F, t5 \ // mask to clear carry bits VSRLB t3, h0, t0 \ VSRLB t3, h1, t1 \ VSRLB t3, h2, t2 \ VESRLG $4, t5, t5 \ // 44 bit clear mask VSRL t4, t0, t0 \ VSRL t4, t1, t1 \ VSRL t7, t2, t2 \ VESRLG $2, t5, t6 \ // 42 bit clear mask VESLG $2, t2, t8 \ VAQ t8, t2, t2 \ VN t5, h0, h0 \ VN t5, h1, h1 \ VN t6, h2, h2 \ VAQ t0, h1, h1 \ VAQ t1, h2, h2 \ VAQ t2, h0, h0 \ VSRLB t3, h0, t0 \ VSRLB t3, h1, t1 \ VSRLB t3, h2, t2 \ VSRL t4, t0, t0 \ VSRL t4, t1, t1 \ VSRL t7, t2, t2 \ VN t5, h0, h0 \ VN t5, h1, h1 \ VESLG $2, t2, t8 \ VN t6, h2, h2 \ VAQ t0, h1, h1 \ VAQ t8, t2, t2 \ VAQ t1, h2, h2 \ VAQ t2, h0, h0 \ // expands two message blocks into the lower halfs of the d registers // moves the contents of the d registers into upper halfs // input: in1, in2, d0, d1, d2, d3, d4, d5 // temp: TEMP0, TEMP1, TEMP2, TEMP3 // output: d0, d1, d2, d3, d4, d5 #define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ VGBM $0xff3f, TEMP0 \ VGBM $0xff1f, TEMP1 \ VESLG $4, d1, TEMP2 \ VESLG $4, d4, TEMP3 \ VESRLG $4, TEMP0, TEMP0 \ VPERM in1, d0, EX0, d0 \ VPERM in2, d3, EX0, d3 \ VPERM in1, d2, EX2, d2 \ VPERM in2, d5, EX2, d5 \ VPERM in1, TEMP2, EX1, d1 \ VPERM in2, TEMP3, EX1, d4 \ VN TEMP0, d0, d0 \ VN TEMP0, d3, d3 \ VESRLG $4, d1, d1 \ VESRLG $4, d4, d4 \ VN TEMP1, d2, d2 \ VN TEMP1, d5, d5 \ VN TEMP0, d1, d1 \ VN TEMP0, d4, d4 \ // expands one message block into the lower halfs of the d registers // moves the contents of the d registers into upper halfs // input: in, d0, d1, d2 // temp: TEMP0, TEMP1, TEMP2 // output: d0, d1, d2 #define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ VGBM $0xff3f, TEMP0 \ VESLG $4, d1, TEMP2 \ VGBM $0xff1f, TEMP1 \ VPERM in, d0, EX0, d0 \ VESRLG $4, TEMP0, TEMP0 \ VPERM in, d2, EX2, d2 \ VPERM in, TEMP2, EX1, d1 \ VN TEMP0, d0, d0 \ VN TEMP1, d2, d2 \ VESRLG $4, d1, d1 \ VN TEMP0, d1, d1 \ // pack h2:h0 into h1:h0 (no carry) // input: h0, h1, h2 // output: h0, h1, h2 #define PACK(h0, h1, h2) \ VMRLG h1, h2, h2 \ // copy h1 to upper half h2 VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) VLEIG $0, $0, h2 \ // clear upper half of h2 VESRLG $40, h2, h1 \ // h1 now has upper two bits of result VLEIB $7, $88, h1 \ // for byte shift (11 bytes) VSLB h1, h2, h2 \ // shift h2 11 bytes to the left VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 VLEIG $0, $0, h1 \ // clear upper half of h1 // if h > 2**130-5 then h -= 2**130-5 // input: h0, h1 // temp: t0, t1, t2 // output: h0 #define MOD(h0, h1, t0, t1, t2) \ VZERO t0 \ VLEIG $1, $5, t0 \ VACCQ h0, t0, t1 \ VAQ h0, t0, t0 \ VONE t2 \ VLEIG $1, $-4, t2 \ VAQ t2, t1, t1 \ VACCQ h1, t1, t1 \ VONE t2 \ VAQ t2, t1, t1 \ VN h0, t1, t2 \ VNC t0, t1, t1 \ VO t1, t2, h0 \ // func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) TEXT ·poly1305vmsl(SB), $0-32 // This code processes 6 + up to 4 blocks (32 bytes) per iteration // using the algorithm described in: // NEON crypto, Daniel J. Bernstein & Peter Schwabe // https://cryptojedi.org/papers/neoncrypto-20120320.pdf // And as moddified for VMSL as described in // Accelerating Poly1305 Cryptographic Message Authentication on the z14 // O'Farrell et al, CASCON 2017, p48-55 // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key VZERO V0 // c // load EX0, EX1 and EX2 MOVD $·constants<>(SB), R5 VLM (R5), EX0, EX2 // c // setup r VL (R4), T_0 MOVD $·keyMask<>(SB), R6 VL (R6), T_1 VN T_0, T_1, T_0 VZERO T_2 // limbs for r VZERO T_3 VZERO T_4 EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) // T_2, T_3, T_4: [0, r] // setup r*20 VLEIG $0, $0, T_0 VLEIG $1, $20, T_0 // T_0: [0, 20] VZERO T_5 VZERO T_6 VMSLG T_0, T_3, T_5, T_5 VMSLG T_0, T_4, T_6, T_6 // store r for final block in GR VLGVG $1, T_2, RSAVE_0 // c VLGVG $1, T_3, RSAVE_1 // c VLGVG $1, T_4, RSAVE_2 // c VLGVG $1, T_5, R5SAVE_1 // c VLGVG $1, T_6, R5SAVE_2 // c // initialize h VZERO H0_0 VZERO H1_0 VZERO H2_0 VZERO H0_1 VZERO H1_1 VZERO H2_1 // initialize pointer for reduce constants MOVD $·reduce<>(SB), R12 // calculate r**2 and 20*(r**2) VZERO R_0 VZERO R_1 VZERO R_2 SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) VZERO R5_1 VZERO R5_2 VMSLG T_0, R_1, R5_1, R5_1 VMSLG T_0, R_2, R5_2, R5_2 // skip r**4 calculation if 3 blocks or less CMPBLE R3, $48, b4 // calculate r**4 and 20*(r**4) VZERO T_8 VZERO T_9 VZERO T_10 SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) VZERO T_2 VZERO T_3 VMSLG T_0, T_9, T_2, T_2 VMSLG T_0, T_10, T_3, T_3 // put r**2 to the right and r**4 to the left of R_0, R_1, R_2 VSLDB $8, T_8, T_8, T_8 VSLDB $8, T_9, T_9, T_9 VSLDB $8, T_10, T_10, T_10 VSLDB $8, T_2, T_2, T_2 VSLDB $8, T_3, T_3, T_3 VO T_8, R_0, R_0 VO T_9, R_1, R_1 VO T_10, R_2, R_2 VO T_2, R5_1, R5_1 VO T_3, R5_2, R5_2 CMPBLE R3, $80, load // less than or equal to 5 blocks in message // 6(or 5+1) blocks SUB $81, R3 VLM (R2), M0, M4 VLL R3, 80(R2), M5 ADD $1, R3 MOVBZ $1, R0 CMPBGE R3, $16, 2(PC) VLVGB R3, R0, M5 MOVD $96(R2), R2 EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) VLEIB $2, $1, H2_0 VLEIB $2, $1, H2_1 VLEIB $10, $1, H2_0 VLEIB $10, $1, H2_1 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO T_4 VZERO T_10 EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) VLR T_4, M4 VLEIB $10, $1, M2 CMPBLT R3, $16, 2(PC) VLEIB $10, $1, T_10 MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) VMRHG V0, H0_1, H0_0 VMRHG V0, H1_1, H1_0 VMRHG V0, H2_1, H2_0 VMRLG V0, H0_1, H0_1 VMRLG V0, H1_1, H1_1 VMRLG V0, H2_1, H2_1 SUB $16, R3 CMPBLE R3, $0, square load: // load EX0, EX1 and EX2 MOVD $·c<>(SB), R5 VLM (R5), EX0, EX2 loop: CMPBLE R3, $64, add // b4 // last 4 or less blocks left // next 4 full blocks VLM (R2), M2, M5 SUB $64, R3 MOVD $64(R2), R2 REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) // expacc in-lined to create [m2, m3] limbs VGBM $0x3f3f, T_0 // 44 bit clear mask VGBM $0x1f1f, T_1 // 40 bit clear mask VPERM M2, M3, EX0, T_3 VESRLG $4, T_0, T_0 // 44 bit clear mask ready VPERM M2, M3, EX1, T_4 VPERM M2, M3, EX2, T_5 VN T_0, T_3, T_3 VESRLG $4, T_4, T_4 VN T_1, T_5, T_5 VN T_0, T_4, T_4 VMRHG H0_1, T_3, H0_0 VMRHG H1_1, T_4, H1_0 VMRHG H2_1, T_5, H2_0 VMRLG H0_1, T_3, H0_1 VMRLG H1_1, T_4, H1_1 VMRLG H2_1, T_5, H2_1 VLEIB $10, $1, H2_0 VLEIB $10, $1, H2_1 VPERM M4, M5, EX0, T_3 VPERM M4, M5, EX1, T_4 VPERM M4, M5, EX2, T_5 VN T_0, T_3, T_3 VESRLG $4, T_4, T_4 VN T_1, T_5, T_5 VN T_0, T_4, T_4 VMRHG V0, T_3, M0 VMRHG V0, T_4, M1 VMRHG V0, T_5, M2 VMRLG V0, T_3, M3 VMRLG V0, T_4, M4 VMRLG V0, T_5, M5 VLEIB $10, $1, M2 VLEIB $10, $1, M5 MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) CMPBNE R3, $0, loop REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) VMRHG V0, H0_1, H0_0 VMRHG V0, H1_1, H1_0 VMRHG V0, H2_1, H2_0 VMRLG V0, H0_1, H0_1 VMRLG V0, H1_1, H1_1 VMRLG V0, H2_1, H2_1 // load EX0, EX1, EX2 MOVD $·constants<>(SB), R5 VLM (R5), EX0, EX2 // sum vectors VAQ H0_0, H0_1, H0_0 VAQ H1_0, H1_1, H1_0 VAQ H2_0, H2_1, H2_0 // h may be >= 2*(2**130-5) so we need to reduce it again // M0...M4 are used as temps here REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) next: // carry h1->h2 VLEIB $7, $0x28, T_1 VREPIB $4, T_2 VGBM $0x003F, T_3 VESRLG $4, T_3 // byte shift VSRLB T_1, H1_0, T_4 // bit shift VSRL T_2, T_4, T_4 // clear h1 carry bits VN T_3, H1_0, H1_0 // add carry VAQ T_4, H2_0, H2_0 // h is now < 2*(2**130-5) // pack h into h1 (hi) and h0 (lo) PACK(H0_0, H1_0, H2_0) // if h > 2**130-5 then h -= 2**130-5 MOD(H0_0, H1_0, T_0, T_1, T_2) // h += s MOVD $·bswapMask<>(SB), R5 VL (R5), T_1 VL 16(R4), T_0 VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) VAQ T_0, H0_0, H0_0 VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) VST H0_0, (R1) RET add: // load EX0, EX1, EX2 MOVD $·constants<>(SB), R5 VLM (R5), EX0, EX2 REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) VMRHG V0, H0_1, H0_0 VMRHG V0, H1_1, H1_0 VMRHG V0, H2_1, H2_0 VMRLG V0, H0_1, H0_1 VMRLG V0, H1_1, H1_1 VMRLG V0, H2_1, H2_1 CMPBLE R3, $64, b4 b4: CMPBLE R3, $48, b3 // 3 blocks or less // 4(3+1) blocks remaining SUB $49, R3 VLM (R2), M0, M2 VLL R3, 48(R2), M3 ADD $1, R3 MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, M3 MOVD $64(R2), R2 EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) VLEIB $10, $1, H2_0 VLEIB $10, $1, H2_1 VZERO M0 VZERO M1 VZERO M4 VZERO M5 VZERO T_4 VZERO T_10 EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) VLR T_4, M2 VLEIB $10, $1, M4 CMPBNE R3, $16, 2(PC) VLEIB $10, $1, T_10 MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) VMRHG V0, H0_1, H0_0 VMRHG V0, H1_1, H1_0 VMRHG V0, H2_1, H2_0 VMRLG V0, H0_1, H0_1 VMRLG V0, H1_1, H1_1 VMRLG V0, H2_1, H2_1 SUB $16, R3 CMPBLE R3, $0, square // this condition must always hold true! b3: CMPBLE R3, $32, b2 // 3 blocks remaining // setup [r²,r] VSLDB $8, R_0, R_0, R_0 VSLDB $8, R_1, R_1, R_1 VSLDB $8, R_2, R_2, R_2 VSLDB $8, R5_1, R5_1, R5_1 VSLDB $8, R5_2, R5_2, R5_2 VLVGG $1, RSAVE_0, R_0 VLVGG $1, RSAVE_1, R_1 VLVGG $1, RSAVE_2, R_2 VLVGG $1, R5SAVE_1, R5_1 VLVGG $1, R5SAVE_2, R5_2 // setup [h0, h1] VSLDB $8, H0_0, H0_0, H0_0 VSLDB $8, H1_0, H1_0, H1_0 VSLDB $8, H2_0, H2_0, H2_0 VO H0_1, H0_0, H0_0 VO H1_1, H1_0, H1_0 VO H2_1, H2_0, H2_0 VZERO H0_1 VZERO H1_1 VZERO H2_1 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 // H*[r**2, r] MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) SUB $33, R3 VLM (R2), M0, M1 VLL R3, 32(R2), M2 ADD $1, R3 MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, M2 // H += m0 VZERO T_1 VZERO T_2 VZERO T_3 EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) VLEIB $10, $1, T_3 VAG H0_0, T_1, H0_0 VAG H1_0, T_2, H1_0 VAG H2_0, T_3, H2_0 VZERO M0 VZERO M3 VZERO M4 VZERO M5 VZERO T_10 // (H+m0)*r MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) // H += m1 VZERO V0 VZERO T_1 VZERO T_2 VZERO T_3 EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) VLEIB $10, $1, T_3 VAQ H0_0, T_1, H0_0 VAQ H1_0, T_2, H1_0 VAQ H2_0, T_3, H2_0 REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) // [H, m2] * [r**2, r] EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) CMPBNE R3, $16, 2(PC) VLEIB $10, $1, H2_0 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) SUB $16, R3 CMPBLE R3, $0, next // this condition must always hold true! b2: CMPBLE R3, $16, b1 // 2 blocks remaining // setup [r²,r] VSLDB $8, R_0, R_0, R_0 VSLDB $8, R_1, R_1, R_1 VSLDB $8, R_2, R_2, R_2 VSLDB $8, R5_1, R5_1, R5_1 VSLDB $8, R5_2, R5_2, R5_2 VLVGG $1, RSAVE_0, R_0 VLVGG $1, RSAVE_1, R_1 VLVGG $1, RSAVE_2, R_2 VLVGG $1, R5SAVE_1, R5_1 VLVGG $1, R5SAVE_2, R5_2 // setup [h0, h1] VSLDB $8, H0_0, H0_0, H0_0 VSLDB $8, H1_0, H1_0, H1_0 VSLDB $8, H2_0, H2_0, H2_0 VO H0_1, H0_0, H0_0 VO H1_1, H1_0, H1_0 VO H2_1, H2_0, H2_0 VZERO H0_1 VZERO H1_1 VZERO H2_1 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 // H*[r**2, r] MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) VMRHG V0, H0_1, H0_0 VMRHG V0, H1_1, H1_0 VMRHG V0, H2_1, H2_0 VMRLG V0, H0_1, H0_1 VMRLG V0, H1_1, H1_1 VMRLG V0, H2_1, H2_1 // move h to the left and 0s at the right VSLDB $8, H0_0, H0_0, H0_0 VSLDB $8, H1_0, H1_0, H1_0 VSLDB $8, H2_0, H2_0, H2_0 // get message blocks and append 1 to start SUB $17, R3 VL (R2), M0 VLL R3, 16(R2), M1 ADD $1, R3 MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, M1 VZERO T_6 VZERO T_7 VZERO T_8 EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) VLEIB $2, $1, T_8 CMPBNE R3, $16, 2(PC) VLEIB $10, $1, T_8 // add [m0, m1] to h VAG H0_0, T_6, H0_0 VAG H1_0, T_7, H1_0 VAG H2_0, T_8, H2_0 VZERO M2 VZERO M3 VZERO M4 VZERO M5 VZERO T_10 VZERO M0 // at this point R_0 .. R5_2 look like [r**2, r] MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) SUB $16, R3, R3 CMPBLE R3, $0, next b1: CMPBLE R3, $0, next // 1 block remaining // setup [r²,r] VSLDB $8, R_0, R_0, R_0 VSLDB $8, R_1, R_1, R_1 VSLDB $8, R_2, R_2, R_2 VSLDB $8, R5_1, R5_1, R5_1 VSLDB $8, R5_2, R5_2, R5_2 VLVGG $1, RSAVE_0, R_0 VLVGG $1, RSAVE_1, R_1 VLVGG $1, RSAVE_2, R_2 VLVGG $1, R5SAVE_1, R5_1 VLVGG $1, R5SAVE_2, R5_2 // setup [h0, h1] VSLDB $8, H0_0, H0_0, H0_0 VSLDB $8, H1_0, H1_0, H1_0 VSLDB $8, H2_0, H2_0, H2_0 VO H0_1, H0_0, H0_0 VO H1_1, H1_0, H1_0 VO H2_1, H2_0, H2_0 VZERO H0_1 VZERO H1_1 VZERO H2_1 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 // H*[r**2, r] MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) // set up [0, m0] limbs SUB $1, R3 VLL R3, (R2), M0 ADD $1, R3 MOVBZ $1, R0 CMPBEQ R3, $16, 2(PC) VLVGB R3, R0, M0 VZERO T_1 VZERO T_2 VZERO T_3 EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] CMPBNE R3, $16, 2(PC) VLEIB $10, $1, T_3 // h+m0 VAQ H0_0, T_1, H0_0 VAQ H1_0, T_2, H1_0 VAQ H2_0, T_3, H2_0 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) BR next square: // setup [r²,r] VSLDB $8, R_0, R_0, R_0 VSLDB $8, R_1, R_1, R_1 VSLDB $8, R_2, R_2, R_2 VSLDB $8, R5_1, R5_1, R5_1 VSLDB $8, R5_2, R5_2, R5_2 VLVGG $1, RSAVE_0, R_0 VLVGG $1, RSAVE_1, R_1 VLVGG $1, RSAVE_2, R_2 VLVGG $1, R5SAVE_1, R5_1 VLVGG $1, R5SAVE_2, R5_2 // setup [h0, h1] VSLDB $8, H0_0, H0_0, H0_0 VSLDB $8, H1_0, H1_0, H1_0 VSLDB $8, H2_0, H2_0, H2_0 VO H0_1, H0_0, H0_0 VO H1_1, H1_0, H1_0 VO H2_1, H2_0, H2_0 VZERO H0_1 VZERO H1_1 VZERO H2_1 VZERO M0 VZERO M1 VZERO M2 VZERO M3 VZERO M4 VZERO M5 // (h0*r**2) + (h1*r) MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) BR next