// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate import ( "io" ) const ( // The largest offset code. offsetCodeCount = 30 // The special code used to mark the end of a block. endBlockMarker = 256 // The first length code. lengthCodesStart = 257 // The number of codegen codes. codegenCodeCount = 19 badCode = 255 // bufferFlushSize indicates the buffer size // after which bytes are flushed to the writer. // Should preferably be a multiple of 6, since // we accumulate 6 bytes between writes to the buffer. bufferFlushSize = 240 // bufferSize is the actual output byte buffer size. // It must have additional headroom for a flush // which can contain up to 8 bytes. bufferSize = bufferFlushSize + 8 ) // The number of extra bits needed by length code X - LENGTH_CODES_START. var lengthExtraBits = [32]int8{ /* 257 */ 0, 0, 0, /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, /* 280 */ 4, 5, 5, 5, 5, 0, } // The length indicated by length code X - LENGTH_CODES_START. var lengthBase = [32]uint8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 255, } // offset code word extra bits. var offsetExtraBits = [64]int8{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* extended window */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, } var offsetBase = [64]uint32{ /* normal deflate */ 0x000000, 0x000001, 0x000002, 0x000003, 0x000004, 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018, 0x000020, 0x000030, 0x000040, 0x000060, 0x000080, 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300, 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000, 0x001800, 0x002000, 0x003000, 0x004000, 0x006000, /* extended window */ 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000, 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000, 0x100000, 0x180000, 0x200000, 0x300000, } // The odd order in which the codegen code sizes are written. var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} type huffmanBitWriter struct { // writer is the underlying writer. // Do not use it directly; use the write method, which ensures // that Write errors are sticky. writer io.Writer // Data waiting to be written is bytes[0:nbytes] // and then the low nbits of bits. bits uint64 nbits uint16 nbytes uint8 literalEncoding *huffmanEncoder offsetEncoding *huffmanEncoder codegenEncoding *huffmanEncoder err error lastHeader int // Set between 0 (reused block can be up to 2x the size) logReusePenalty uint lastHuffMan bool bytes [256]byte literalFreq [lengthCodesStart + 32]uint16 offsetFreq [32]uint16 codegenFreq [codegenCodeCount]uint16 // codegen must have an extra space for the final symbol. codegen [literalCount + offsetCodeCount + 1]uint8 } // Huffman reuse. // // The huffmanBitWriter supports reusing huffman tables and thereby combining block sections. // // This is controlled by several variables: // // If lastHeader is non-zero the Huffman table can be reused. // This also indicates that a Huffman table has been generated that can output all // possible symbols. // It also indicates that an EOB has not yet been emitted, so if a new tabel is generated // an EOB with the previous table must be written. // // If lastHuffMan is set, a table for outputting literals has been generated and offsets are invalid. // // An incoming block estimates the output size of a new table using a 'fresh' by calculating the // optimal size and adding a penalty in 'logReusePenalty'. // A Huffman table is not optimal, which is why we add a penalty, and generating a new table // is slower both for compression and decompression. func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter { return &huffmanBitWriter{ writer: w, literalEncoding: newHuffmanEncoder(literalCount), codegenEncoding: newHuffmanEncoder(codegenCodeCount), offsetEncoding: newHuffmanEncoder(offsetCodeCount), } } func (w *huffmanBitWriter) reset(writer io.Writer) { w.writer = writer w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil w.bytes = [256]byte{} w.lastHeader = 0 w.lastHuffMan = false } func (w *huffmanBitWriter) canReuse(t *tokens) (offsets, lits bool) { offsets, lits = true, true a := t.offHist[:offsetCodeCount] b := w.offsetFreq[:len(a)] for i := range a { if b[i] == 0 && a[i] != 0 { offsets = false break } } a = t.extraHist[:literalCount-256] b = w.literalFreq[256:literalCount] b = b[:len(a)] for i := range a { if b[i] == 0 && a[i] != 0 { lits = false break } } if lits { a = t.litHist[:] b = w.literalFreq[:len(a)] for i := range a { if b[i] == 0 && a[i] != 0 { lits = false break } } } return } func (w *huffmanBitWriter) flush() { if w.err != nil { w.nbits = 0 return } n := w.nbytes for w.nbits != 0 { w.bytes[n] = byte(w.bits) w.bits >>= 8 if w.nbits > 8 { // Avoid underflow w.nbits -= 8 } else { w.nbits = 0 } n++ } w.bits = 0 w.write(w.bytes[:n]) w.nbytes = 0 } func (w *huffmanBitWriter) write(b []byte) { if w.err != nil { return } _, w.err = w.writer.Write(b) } func (w *huffmanBitWriter) writeBits(b int32, nb uint16) { w.bits |= uint64(b) << (w.nbits & 63) w.nbits += nb if w.nbits >= 48 { w.writeOutBits() } } func (w *huffmanBitWriter) writeBytes(bytes []byte) { if w.err != nil { return } n := w.nbytes if w.nbits&7 != 0 { w.err = InternalError("writeBytes with unfinished bits") return } for w.nbits != 0 { w.bytes[n] = byte(w.bits) w.bits >>= 8 w.nbits -= 8 n++ } if n != 0 { w.write(w.bytes[:n]) } w.nbytes = 0 w.write(bytes) } // RFC 1951 3.2.7 specifies a special run-length encoding for specifying // the literal and offset lengths arrays (which are concatenated into a single // array). This method generates that run-length encoding. // // The result is written into the codegen array, and the frequencies // of each code is written into the codegenFreq array. // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional // information. Code badCode is an end marker // // numLiterals The number of literals in literalEncoding // numOffsets The number of offsets in offsetEncoding // litenc, offenc The literal and offset encoder to use func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) { for i := range w.codegenFreq { w.codegenFreq[i] = 0 } // Note that we are using codegen both as a temporary variable for holding // a copy of the frequencies, and as the place where we put the result. // This is fine because the output is always shorter than the input used // so far. codegen := w.codegen[:] // cache // Copy the concatenated code sizes to codegen. Put a marker at the end. cgnl := codegen[:numLiterals] for i := range cgnl { cgnl[i] = uint8(litEnc.codes[i].len) } cgnl = codegen[numLiterals : numLiterals+numOffsets] for i := range cgnl { cgnl[i] = uint8(offEnc.codes[i].len) } codegen[numLiterals+numOffsets] = badCode size := codegen[0] count := 1 outIndex := 0 for inIndex := 1; size != badCode; inIndex++ { // INVARIANT: We have seen "count" copies of size that have not yet // had output generated for them. nextSize := codegen[inIndex] if nextSize == size { count++ continue } // We need to generate codegen indicating "count" of size. if size != 0 { codegen[outIndex] = size outIndex++ w.codegenFreq[size]++ count-- for count >= 3 { n := 6 if n > count { n = count } codegen[outIndex] = 16 outIndex++ codegen[outIndex] = uint8(n - 3) outIndex++ w.codegenFreq[16]++ count -= n } } else { for count >= 11 { n := 138 if n > count { n = count } codegen[outIndex] = 18 outIndex++ codegen[outIndex] = uint8(n - 11) outIndex++ w.codegenFreq[18]++ count -= n } if count >= 3 { // count >= 3 && count <= 10 codegen[outIndex] = 17 outIndex++ codegen[outIndex] = uint8(count - 3) outIndex++ w.codegenFreq[17]++ count = 0 } } count-- for ; count >= 0; count-- { codegen[outIndex] = size outIndex++ w.codegenFreq[size]++ } // Set up invariant for next time through the loop. size = nextSize count = 1 } // Marker indicating the end of the codegen. codegen[outIndex] = badCode } func (w *huffmanBitWriter) codegens() int { numCodegens := len(w.codegenFreq) for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 { numCodegens-- } return numCodegens } func (w *huffmanBitWriter) headerSize() (size, numCodegens int) { numCodegens = len(w.codegenFreq) for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 { numCodegens-- } return 3 + 5 + 5 + 4 + (3 * numCodegens) + w.codegenEncoding.bitLength(w.codegenFreq[:]) + int(w.codegenFreq[16])*2 + int(w.codegenFreq[17])*3 + int(w.codegenFreq[18])*7, numCodegens } // dynamicSize returns the size of dynamically encoded data in bits. func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) { header, numCodegens := w.headerSize() size = header + litEnc.bitLength(w.literalFreq[:]) + offEnc.bitLength(w.offsetFreq[:]) + extraBits return size, numCodegens } // extraBitSize will return the number of bits that will be written // as "extra" bits on matches. func (w *huffmanBitWriter) extraBitSize() int { total := 0 for i, n := range w.literalFreq[257:literalCount] { total += int(n) * int(lengthExtraBits[i&31]) } for i, n := range w.offsetFreq[:offsetCodeCount] { total += int(n) * int(offsetExtraBits[i&31]) } return total } // fixedSize returns the size of dynamically encoded data in bits. func (w *huffmanBitWriter) fixedSize(extraBits int) int { return 3 + fixedLiteralEncoding.bitLength(w.literalFreq[:]) + fixedOffsetEncoding.bitLength(w.offsetFreq[:]) + extraBits } // storedSize calculates the stored size, including header. // The function returns the size in bits and whether the block // fits inside a single block. func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) { if in == nil { return 0, false } if len(in) <= maxStoreBlockSize { return (len(in) + 5) * 8, true } return 0, false } func (w *huffmanBitWriter) writeCode(c hcode) { // The function does not get inlined if we "& 63" the shift. w.bits |= uint64(c.code) << w.nbits w.nbits += c.len if w.nbits >= 48 { w.writeOutBits() } } // writeOutBits will write bits to the buffer. func (w *huffmanBitWriter) writeOutBits() { bits := w.bits w.bits >>= 48 w.nbits -= 48 n := w.nbytes w.bytes[n] = byte(bits) w.bytes[n+1] = byte(bits >> 8) w.bytes[n+2] = byte(bits >> 16) w.bytes[n+3] = byte(bits >> 24) w.bytes[n+4] = byte(bits >> 32) w.bytes[n+5] = byte(bits >> 40) n += 6 if n >= bufferFlushSize { if w.err != nil { n = 0 return } w.write(w.bytes[:n]) n = 0 } w.nbytes = n } // Write the header of a dynamic Huffman block to the output stream. // // numLiterals The number of literals specified in codegen // numOffsets The number of offsets specified in codegen // numCodegens The number of codegens used in codegen func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) { if w.err != nil { return } var firstBits int32 = 4 if isEof { firstBits = 5 } w.writeBits(firstBits, 3) w.writeBits(int32(numLiterals-257), 5) w.writeBits(int32(numOffsets-1), 5) w.writeBits(int32(numCodegens-4), 4) for i := 0; i < numCodegens; i++ { value := uint(w.codegenEncoding.codes[codegenOrder[i]].len) w.writeBits(int32(value), 3) } i := 0 for { var codeWord int = int(w.codegen[i]) i++ if codeWord == badCode { break } w.writeCode(w.codegenEncoding.codes[uint32(codeWord)]) switch codeWord { case 16: w.writeBits(int32(w.codegen[i]), 2) i++ break case 17: w.writeBits(int32(w.codegen[i]), 3) i++ break case 18: w.writeBits(int32(w.codegen[i]), 7) i++ break } } } func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) { if w.err != nil { return } if w.lastHeader > 0 { // We owe an EOB w.writeCode(w.literalEncoding.codes[endBlockMarker]) w.lastHeader = 0 } var flag int32 if isEof { flag = 1 } w.writeBits(flag, 3) w.flush() w.writeBits(int32(length), 16) w.writeBits(int32(^uint16(length)), 16) } func (w *huffmanBitWriter) writeFixedHeader(isEof bool) { if w.err != nil { return } if w.lastHeader > 0 { // We owe an EOB w.writeCode(w.literalEncoding.codes[endBlockMarker]) w.lastHeader = 0 } // Indicate that we are a fixed Huffman block var value int32 = 2 if isEof { value = 3 } w.writeBits(value, 3) } // writeBlock will write a block of tokens with the smallest encoding. // The original input can be supplied, and if the huffman encoded data // is larger than the original bytes, the data will be written as a // stored block. // If the input is nil, the tokens will always be Huffman encoded. func (w *huffmanBitWriter) writeBlock(tokens *tokens, eof bool, input []byte) { if w.err != nil { return } tokens.AddEOB() if w.lastHeader > 0 { // We owe an EOB w.writeCode(w.literalEncoding.codes[endBlockMarker]) w.lastHeader = 0 } numLiterals, numOffsets := w.indexTokens(tokens, false) w.generate(tokens) var extraBits int storedSize, storable := w.storedSize(input) if storable { extraBits = w.extraBitSize() } // Figure out smallest code. // Fixed Huffman baseline. var literalEncoding = fixedLiteralEncoding var offsetEncoding = fixedOffsetEncoding var size = w.fixedSize(extraBits) // Dynamic Huffman? var numCodegens int // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) w.codegenEncoding.generate(w.codegenFreq[:], 7) dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits) if dynamicSize < size { size = dynamicSize literalEncoding = w.literalEncoding offsetEncoding = w.offsetEncoding } // Stored bytes? if storable && storedSize < size { w.writeStoredHeader(len(input), eof) w.writeBytes(input) return } // Huffman. if literalEncoding == fixedLiteralEncoding { w.writeFixedHeader(eof) } else { w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) } // Write the tokens. w.writeTokens(tokens.Slice(), literalEncoding.codes, offsetEncoding.codes) } // writeBlockDynamic encodes a block using a dynamic Huffman table. // This should be used if the symbols used have a disproportionate // histogram distribution. // If input is supplied and the compression savings are below 1/16th of the // input size the block is stored. func (w *huffmanBitWriter) writeBlockDynamic(tokens *tokens, eof bool, input []byte, sync bool) { if w.err != nil { return } sync = sync || eof if sync { tokens.AddEOB() } // We cannot reuse pure huffman table. if w.lastHuffMan && w.lastHeader > 0 { // We will not try to reuse. w.writeCode(w.literalEncoding.codes[endBlockMarker]) w.lastHeader = 0 w.lastHuffMan = false } if !sync { tokens.Fill() } numLiterals, numOffsets := w.indexTokens(tokens, !sync) var size int // Check if we should reuse. if w.lastHeader > 0 { // Estimate size for using a new table newSize := w.lastHeader + tokens.EstimatedBits() // The estimated size is calculated as an optimal table. // We add a penalty to make it more realistic and re-use a bit more. newSize += newSize >> (w.logReusePenalty & 31) extra := w.extraBitSize() reuseSize, _ := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extra) // Check if a new table is better. if newSize < reuseSize { // Write the EOB we owe. w.writeCode(w.literalEncoding.codes[endBlockMarker]) size = newSize w.lastHeader = 0 } else { size = reuseSize } // Check if we get a reasonable size decrease. if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { w.writeStoredHeader(len(input), eof) w.writeBytes(input) w.lastHeader = 0 return } } // We want a new block/table if w.lastHeader == 0 { w.generate(tokens) // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) w.codegenEncoding.generate(w.codegenFreq[:], 7) var numCodegens int size, numCodegens = w.dynamicSize(w.literalEncoding, w.offsetEncoding, w.extraBitSize()) // Store bytes, if we don't get a reasonable improvement. if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { w.writeStoredHeader(len(input), eof) w.writeBytes(input) w.lastHeader = 0 return } // Write Huffman table. w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) w.lastHeader, _ = w.headerSize() w.lastHuffMan = false } if sync { w.lastHeader = 0 } // Write the tokens. w.writeTokens(tokens.Slice(), w.literalEncoding.codes, w.offsetEncoding.codes) } // indexTokens indexes a slice of tokens, and updates // literalFreq and offsetFreq, and generates literalEncoding // and offsetEncoding. // The number of literal and offset tokens is returned. func (w *huffmanBitWriter) indexTokens(t *tokens, filled bool) (numLiterals, numOffsets int) { copy(w.literalFreq[:], t.litHist[:]) copy(w.literalFreq[256:], t.extraHist[:]) copy(w.offsetFreq[:], t.offHist[:offsetCodeCount]) if t.n == 0 { return } if filled { return maxNumLit, maxNumDist } // get the number of literals numLiterals = len(w.literalFreq) for w.literalFreq[numLiterals-1] == 0 { numLiterals-- } // get the number of offsets numOffsets = len(w.offsetFreq) for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 { numOffsets-- } if numOffsets == 0 { // We haven't found a single match. If we want to go with the dynamic encoding, // we should count at least one offset to be sure that the offset huffman tree could be encoded. w.offsetFreq[0] = 1 numOffsets = 1 } return } func (w *huffmanBitWriter) generate(t *tokens) { w.literalEncoding.generate(w.literalFreq[:literalCount], 15) w.offsetEncoding.generate(w.offsetFreq[:offsetCodeCount], 15) } // writeTokens writes a slice of tokens to the output. // codes for literal and offset encoding must be supplied. func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) { if w.err != nil { return } if len(tokens) == 0 { return } // Only last token should be endBlockMarker. var deferEOB bool if tokens[len(tokens)-1] == endBlockMarker { tokens = tokens[:len(tokens)-1] deferEOB = true } // Create slices up to the next power of two to avoid bounds checks. lits := leCodes[:256] offs := oeCodes[:32] lengths := leCodes[lengthCodesStart:] lengths = lengths[:32] for _, t := range tokens { if t < matchType { w.writeCode(lits[t.literal()]) continue } // Write the length length := t.length() lengthCode := lengthCode(length) if false { w.writeCode(lengths[lengthCode&31]) } else { // inlined c := lengths[lengthCode&31] w.bits |= uint64(c.code) << (w.nbits & 63) w.nbits += c.len if w.nbits >= 48 { w.writeOutBits() } } extraLengthBits := uint16(lengthExtraBits[lengthCode&31]) if extraLengthBits > 0 { extraLength := int32(length - lengthBase[lengthCode&31]) w.writeBits(extraLength, extraLengthBits) } // Write the offset offset := t.offset() offsetCode := offsetCode(offset) if false { w.writeCode(offs[offsetCode&31]) } else { // inlined c := offs[offsetCode&31] w.bits |= uint64(c.code) << (w.nbits & 63) w.nbits += c.len if w.nbits >= 48 { w.writeOutBits() } } extraOffsetBits := uint16(offsetExtraBits[offsetCode&63]) if extraOffsetBits > 0 { extraOffset := int32(offset - offsetBase[offsetCode&63]) w.writeBits(extraOffset, extraOffsetBits) } } if deferEOB { w.writeCode(leCodes[endBlockMarker]) } } // huffOffset is a static offset encoder used for huffman only encoding. // It can be reused since we will not be encoding offset values. var huffOffset *huffmanEncoder func init() { w := newHuffmanBitWriter(nil) w.offsetFreq[0] = 1 huffOffset = newHuffmanEncoder(offsetCodeCount) huffOffset.generate(w.offsetFreq[:offsetCodeCount], 15) } // writeBlockHuff encodes a block of bytes as either // Huffman encoded literals or uncompressed bytes if the // results only gains very little from compression. func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte, sync bool) { if w.err != nil { return } // Clear histogram for i := range w.literalFreq[:] { w.literalFreq[i] = 0 } if !w.lastHuffMan { for i := range w.offsetFreq[:] { w.offsetFreq[i] = 0 } } // Add everything as literals estBits := histogramSize(input, w.literalFreq[:], !eof && !sync) + 15 // Store bytes, if we don't get a reasonable improvement. ssize, storable := w.storedSize(input) if storable && ssize < (estBits+estBits>>4) { w.writeStoredHeader(len(input), eof) w.writeBytes(input) return } if w.lastHeader > 0 { size, _ := w.dynamicSize(w.literalEncoding, huffOffset, w.lastHeader) estBits += estBits >> (w.logReusePenalty) if estBits < size { // We owe an EOB w.writeCode(w.literalEncoding.codes[endBlockMarker]) w.lastHeader = 0 } } const numLiterals = endBlockMarker + 1 const numOffsets = 1 if w.lastHeader == 0 { w.literalFreq[endBlockMarker] = 1 w.literalEncoding.generate(w.literalFreq[:numLiterals], 15) // Generate codegen and codegenFrequencies, which indicates how to encode // the literalEncoding and the offsetEncoding. w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset) w.codegenEncoding.generate(w.codegenFreq[:], 7) numCodegens := w.codegens() // Huffman. w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) w.lastHuffMan = true w.lastHeader, _ = w.headerSize() } encoding := w.literalEncoding.codes[:257] for _, t := range input { // Bitwriting inlined, ~30% speedup c := encoding[t] w.bits |= uint64(c.code) << ((w.nbits) & 63) w.nbits += c.len if w.nbits >= 48 { bits := w.bits w.bits >>= 48 w.nbits -= 48 n := w.nbytes w.bytes[n] = byte(bits) w.bytes[n+1] = byte(bits >> 8) w.bytes[n+2] = byte(bits >> 16) w.bytes[n+3] = byte(bits >> 24) w.bytes[n+4] = byte(bits >> 32) w.bytes[n+5] = byte(bits >> 40) n += 6 if n >= bufferFlushSize { if w.err != nil { n = 0 return } w.write(w.bytes[:n]) n = 0 } w.nbytes = n } } if eof || sync { w.writeCode(encoding[endBlockMarker]) w.lastHeader = 0 w.lastHuffMan = false } }