// Copyright 2011 The Snappy-Go Authors. All rights reserved. // Modified for deflate by Klaus Post (c) 2015. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package flate // emitLiteral writes a literal chunk and returns the number of bytes written. func emitLiteral(dst *tokens, lit []byte) { ol := int(dst.n) for i, v := range lit { dst.tokens[(i+ol)&maxStoreBlockSize] = token(v) } dst.n += uint16(len(lit)) } // emitCopy writes a copy chunk and returns the number of bytes written. func emitCopy(dst *tokens, offset, length int) { dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize)) dst.n++ } type snappyEnc interface { Encode(dst *tokens, src []byte) Reset() } func newSnappy(level int) snappyEnc { switch level { case 1: return &snappyL1{} case 2: return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}} case 3: return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}} case 4: return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}} default: panic("invalid level specified") } } const ( tableBits = 14 // Bits used in the table tableSize = 1 << tableBits // Size of the table tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32. baseMatchOffset = 1 // The smallest match offset baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 maxMatchOffset = 1 << 15 // The largest match offset ) func load32(b []byte, i int) uint32 { b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 } func load64(b []byte, i int) uint64 { b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 } func hash(u uint32) uint32 { return (u * 0x1e35a7bd) >> tableShift } // snappyL1 encapsulates level 1 compression type snappyL1 struct{} func (e *snappyL1) Reset() {} func (e *snappyL1) Encode(dst *tokens, src []byte) { const ( inputMargin = 16 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin ) // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) return } // Initialize the hash table. // // The table element type is uint16, as s < sLimit and sLimit < len(src) // and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535. var table [tableSize]uint16 // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := len(src) - inputMargin // nextEmit is where in src the next emitLiteral should start from. nextEmit := 0 // The encoded form must start with a literal, as there are no previous // bytes to copy, so we start looking for hash matches at s == 1. s := 1 nextHash := hash(load32(src, s)) for { // Copied from the C++ snappy implementation: // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match // is found, immediately go back to looking at every byte. This is a // small loss (~5% performance, ~0.1% density) for compressible data // due to more bookkeeping, but for non-compressible data (such as // JPEG) it's a huge win since the compressor quickly "realizes" the // data is incompressible and doesn't bother looking for matches // everywhere. // // The "skip" variable keeps track of how many bytes there are since // the last match; dividing it by 32 (ie. right-shifting by five) gives // the number of bytes to move ahead for each iteration. skip := 32 nextS := s candidate := 0 for { s = nextS bytesBetweenHashLookups := skip >> 5 nextS = s + bytesBetweenHashLookups skip += bytesBetweenHashLookups if nextS > sLimit { goto emitRemainder } candidate = int(table[nextHash&tableMask]) table[nextHash&tableMask] = uint16(s) nextHash = hash(load32(src, nextS)) // TODO: < should be <=, and add a test for that. if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) { break } } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. emitLiteral(dst, src[nextEmit:s]) // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. base := s // Extend the 4-byte match as long as possible. // // This is an inlined version of Snappy's: // s = extendMatch(src, candidate+4, s+4) s += 4 s1 := base + maxMatchLength if s1 > len(src) { s1 = len(src) } a := src[s:s1] b := src[candidate+4:] b = b[:len(a)] l := len(a) for i := range a { if a[i] != b[i] { l = i break } } s += l // matchToken is flate's equivalent of Snappy's emitCopy. dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset)) dst.n++ nextEmit = s if s >= sLimit { goto emitRemainder } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-1 and at s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load64(src, s-1) prevHash := hash(uint32(x >> 0)) table[prevHash&tableMask] = uint16(s - 1) currHash := hash(uint32(x >> 8)) candidate = int(table[currHash&tableMask]) table[currHash&tableMask] = uint16(s) // TODO: >= should be >, and add a test for that. if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) { nextHash = hash(uint32(x >> 16)) s++ break } } } emitRemainder: if nextEmit < len(src) { emitLiteral(dst, src[nextEmit:]) } } type tableEntry struct { val uint32 offset int32 } func load3232(b []byte, i int32) uint32 { b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 } func load6432(b []byte, i int32) uint64 { b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 } // snappyGen maintains the table for matches, // and the previous byte block for level 2. // This is the generic implementation. type snappyGen struct { prev []byte cur int32 } // snappyGen maintains the table for matches, // and the previous byte block for level 2. // This is the generic implementation. type snappyL2 struct { snappyGen table [tableSize]tableEntry } // EncodeL2 uses a similar algorithm to level 1, but is capable // of matching across blocks giving better compression at a small slowdown. func (e *snappyL2) Encode(dst *tokens, src []byte) { const ( inputMargin = 16 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin ) // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { for i := range e.table { e.table[i] = tableEntry{} } e.cur = maxStoreBlockSize } // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) e.cur += maxStoreBlockSize e.prev = e.prev[:0] return } // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := int32(len(src) - inputMargin) // nextEmit is where in src the next emitLiteral should start from. nextEmit := int32(0) s := int32(0) cv := load3232(src, s) nextHash := hash(cv) for { // Copied from the C++ snappy implementation: // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match // is found, immediately go back to looking at every byte. This is a // small loss (~5% performance, ~0.1% density) for compressible data // due to more bookkeeping, but for non-compressible data (such as // JPEG) it's a huge win since the compressor quickly "realizes" the // data is incompressible and doesn't bother looking for matches // everywhere. // // The "skip" variable keeps track of how many bytes there are since // the last match; dividing it by 32 (ie. right-shifting by five) gives // the number of bytes to move ahead for each iteration. skip := int32(32) nextS := s var candidate tableEntry for { s = nextS bytesBetweenHashLookups := skip >> 5 nextS = s + bytesBetweenHashLookups skip += bytesBetweenHashLookups if nextS > sLimit { goto emitRemainder } candidate = e.table[nextHash&tableMask] now := load3232(src, nextS) e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv} nextHash = hash(now) offset := s - (candidate.offset - e.cur) if offset >= maxMatchOffset || cv != candidate.val { // Out of range or not matched. cv = now continue } break } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. emitLiteral(dst, src[nextEmit:s]) // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. // Extend the 4-byte match as long as possible. // s += 4 t := candidate.offset - e.cur + 4 l := e.matchlen(s, t, src) // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) dst.n++ s += l nextEmit = s if s >= sLimit { goto emitRemainder } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-1 and at s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load6432(src, s-1) prevHash := hash(uint32(x)) e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)} x >>= 8 currHash := hash(uint32(x)) candidate = e.table[currHash&tableMask] e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)} offset := s - (candidate.offset - e.cur) if offset >= maxMatchOffset || uint32(x) != candidate.val { cv = uint32(x >> 8) nextHash = hash(cv) s++ break } } } emitRemainder: if int(nextEmit) < len(src) { emitLiteral(dst, src[nextEmit:]) } e.cur += int32(len(src)) e.prev = e.prev[:len(src)] copy(e.prev, src) } type tableEntryPrev struct { Cur tableEntry Prev tableEntry } // snappyL3 type snappyL3 struct { snappyGen table [tableSize]tableEntryPrev } // Encode uses a similar algorithm to level 2, will check up to two candidates. func (e *snappyL3) Encode(dst *tokens, src []byte) { const ( inputMargin = 16 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin ) // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { for i := range e.table { e.table[i] = tableEntryPrev{} } e.cur = maxStoreBlockSize } // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) e.cur += maxStoreBlockSize e.prev = e.prev[:0] return } // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := int32(len(src) - inputMargin) // nextEmit is where in src the next emitLiteral should start from. nextEmit := int32(0) s := int32(0) cv := load3232(src, s) nextHash := hash(cv) for { // Copied from the C++ snappy implementation: // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match // is found, immediately go back to looking at every byte. This is a // small loss (~5% performance, ~0.1% density) for compressible data // due to more bookkeeping, but for non-compressible data (such as // JPEG) it's a huge win since the compressor quickly "realizes" the // data is incompressible and doesn't bother looking for matches // everywhere. // // The "skip" variable keeps track of how many bytes there are since // the last match; dividing it by 32 (ie. right-shifting by five) gives // the number of bytes to move ahead for each iteration. skip := int32(32) nextS := s var candidate tableEntry for { s = nextS bytesBetweenHashLookups := skip >> 5 nextS = s + bytesBetweenHashLookups skip += bytesBetweenHashLookups if nextS > sLimit { goto emitRemainder } candidates := e.table[nextHash&tableMask] now := load3232(src, nextS) e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}} nextHash = hash(now) // Check both candidates candidate = candidates.Cur if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { break } } else { // We only check if value mismatches. // Offset will always be invalid in other cases. candidate = candidates.Prev if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { break } } } cv = now } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. emitLiteral(dst, src[nextEmit:s]) // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. // Extend the 4-byte match as long as possible. // s += 4 t := candidate.offset - e.cur + 4 l := e.matchlen(s, t, src) // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) dst.n++ s += l nextEmit = s if s >= sLimit { goto emitRemainder } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-2, s-1 and at s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load6432(src, s-2) prevHash := hash(uint32(x)) e.table[prevHash&tableMask] = tableEntryPrev{ Prev: e.table[prevHash&tableMask].Cur, Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)}, } x >>= 8 prevHash = hash(uint32(x)) e.table[prevHash&tableMask] = tableEntryPrev{ Prev: e.table[prevHash&tableMask].Cur, Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)}, } x >>= 8 currHash := hash(uint32(x)) candidates := e.table[currHash&tableMask] cv = uint32(x) e.table[currHash&tableMask] = tableEntryPrev{ Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}, } // Check both candidates candidate = candidates.Cur if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { continue } } else { // We only check if value mismatches. // Offset will always be invalid in other cases. candidate = candidates.Prev if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { continue } } } cv = uint32(x >> 8) nextHash = hash(cv) s++ break } } emitRemainder: if int(nextEmit) < len(src) { emitLiteral(dst, src[nextEmit:]) } e.cur += int32(len(src)) e.prev = e.prev[:len(src)] copy(e.prev, src) } // snappyL4 type snappyL4 struct { snappyL3 } // Encode uses a similar algorithm to level 3, // but will check up to two candidates if first isn't long enough. func (e *snappyL4) Encode(dst *tokens, src []byte) { const ( inputMargin = 16 - 1 minNonLiteralBlockSize = 1 + 1 + inputMargin matchLenGood = 12 ) // Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. if e.cur > 1<<30 { for i := range e.table { e.table[i] = tableEntryPrev{} } e.cur = maxStoreBlockSize } // This check isn't in the Snappy implementation, but there, the caller // instead of the callee handles this case. if len(src) < minNonLiteralBlockSize { // We do not fill the token table. // This will be picked up by caller. dst.n = uint16(len(src)) e.cur += maxStoreBlockSize e.prev = e.prev[:0] return } // sLimit is when to stop looking for offset/length copies. The inputMargin // lets us use a fast path for emitLiteral in the main loop, while we are // looking for copies. sLimit := int32(len(src) - inputMargin) // nextEmit is where in src the next emitLiteral should start from. nextEmit := int32(0) s := int32(0) cv := load3232(src, s) nextHash := hash(cv) for { // Copied from the C++ snappy implementation: // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match // is found, immediately go back to looking at every byte. This is a // small loss (~5% performance, ~0.1% density) for compressible data // due to more bookkeeping, but for non-compressible data (such as // JPEG) it's a huge win since the compressor quickly "realizes" the // data is incompressible and doesn't bother looking for matches // everywhere. // // The "skip" variable keeps track of how many bytes there are since // the last match; dividing it by 32 (ie. right-shifting by five) gives // the number of bytes to move ahead for each iteration. skip := int32(32) nextS := s var candidate tableEntry var candidateAlt tableEntry for { s = nextS bytesBetweenHashLookups := skip >> 5 nextS = s + bytesBetweenHashLookups skip += bytesBetweenHashLookups if nextS > sLimit { goto emitRemainder } candidates := e.table[nextHash&tableMask] now := load3232(src, nextS) e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}} nextHash = hash(now) // Check both candidates candidate = candidates.Cur if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { offset = s - (candidates.Prev.offset - e.cur) if cv == candidates.Prev.val && offset < maxMatchOffset { candidateAlt = candidates.Prev } break } } else { // We only check if value mismatches. // Offset will always be invalid in other cases. candidate = candidates.Prev if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { break } } } cv = now } // A 4-byte match has been found. We'll later see if more than 4 bytes // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit // them as literal bytes. emitLiteral(dst, src[nextEmit:s]) // Call emitCopy, and then see if another emitCopy could be our next // move. Repeat until we find no match for the input immediately after // what was consumed by the last emitCopy call. // // If we exit this loop normally then we need to call emitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can // exit this loop via goto if we get close to exhausting the input. for { // Invariant: we have a 4-byte match at s, and no need to emit any // literal bytes prior to s. // Extend the 4-byte match as long as possible. // s += 4 t := candidate.offset - e.cur + 4 l := e.matchlen(s, t, src) // Try alternative candidate if match length < matchLenGood. if l < matchLenGood-4 && candidateAlt.offset != 0 { t2 := candidateAlt.offset - e.cur + 4 l2 := e.matchlen(s, t2, src) if l2 > l { l = l2 t = t2 } } // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) dst.n++ s += l nextEmit = s if s >= sLimit { goto emitRemainder } // We could immediately start working at s now, but to improve // compression we first update the hash table at s-2, s-1 and at s. If // another emitCopy is not our next move, also calculate nextHash // at s+1. At least on GOARCH=amd64, these three hash calculations // are faster as one load64 call (with some shifts) instead of // three load32 calls. x := load6432(src, s-2) prevHash := hash(uint32(x)) e.table[prevHash&tableMask] = tableEntryPrev{ Prev: e.table[prevHash&tableMask].Cur, Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)}, } x >>= 8 prevHash = hash(uint32(x)) e.table[prevHash&tableMask] = tableEntryPrev{ Prev: e.table[prevHash&tableMask].Cur, Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)}, } x >>= 8 currHash := hash(uint32(x)) candidates := e.table[currHash&tableMask] cv = uint32(x) e.table[currHash&tableMask] = tableEntryPrev{ Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}, } // Check both candidates candidate = candidates.Cur candidateAlt = tableEntry{} if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { offset = s - (candidates.Prev.offset - e.cur) if cv == candidates.Prev.val && offset < maxMatchOffset { candidateAlt = candidates.Prev } continue } } else { // We only check if value mismatches. // Offset will always be invalid in other cases. candidate = candidates.Prev if cv == candidate.val { offset := s - (candidate.offset - e.cur) if offset < maxMatchOffset { continue } } } cv = uint32(x >> 8) nextHash = hash(cv) s++ break } } emitRemainder: if int(nextEmit) < len(src) { emitLiteral(dst, src[nextEmit:]) } e.cur += int32(len(src)) e.prev = e.prev[:len(src)] copy(e.prev, src) } func (e *snappyGen) matchlen(s, t int32, src []byte) int32 { s1 := int(s) + maxMatchLength - 4 if s1 > len(src) { s1 = len(src) } // If we are inside the current block if t >= 0 { b := src[t:] a := src[s:s1] b = b[:len(a)] // Extend the match to be as long as possible. for i := range a { if a[i] != b[i] { return int32(i) } } return int32(len(a)) } // We found a match in the previous block. tp := int32(len(e.prev)) + t if tp < 0 { return 0 } // Extend the match to be as long as possible. a := src[s:s1] b := e.prev[tp:] if len(b) > len(a) { b = b[:len(a)] } a = a[:len(b)] for i := range b { if a[i] != b[i] { return int32(i) } } n := int32(len(b)) a = src[s+n : s1] b = src[:len(a)] for i := range a { if a[i] != b[i] { return int32(i) + n } } return int32(len(a)) + n } // Reset the encoding table. func (e *snappyGen) Reset() { e.prev = e.prev[:0] e.cur += maxMatchOffset + 1 }